6,943 research outputs found

    Robust Simulation of a TaO Memristor Model

    Get PDF
    This work presents a continuous and differentiable approximation of a Tantalum oxide memristor model which is suited for robust numerical simulations in software. The original model was recently developed at Hewlett Packard labs on the basis of experiments carried out on a memristor manufactured in house. The Hewlett Packard model of the nano-scale device is accurate and may be taken as reference for a deep investigation of the capabilities of the memristor based on Tantalum oxide. However, the model contains discontinuous and piecewise differentiable functions respectively in state equation and Ohm's based law. Numerical integration of the differential algebraic equation set may be significantly facilitated under substitution of these functions with appropriate continuous and differentiable approximations. A detailed investigation of classes of possible continuous and differentiable kernels for the approximation of the discontinuous and piecewise differentiable functions in the original model led to the choice of near optimal candidates. The resulting continuous and differentiable DAE set captures accurately the dynamics of the original model, delivers well-behaved numerical solutions in software, and may be integrated into a commercially-available circuit simulator

    Resistive Switching Assisted by Noise

    Full text link
    We extend results by Stotland and Di Ventra on the phenomenon of resistive switching aided by noise. We further the analysis of the mechanism underlying the beneficial role of noise and study the EPIR (Electrical Pulse Induced Resistance) ratio dependence with noise power. In the case of internal noise we find an optimal range where the EPIR ratio is both maximized and independent of the preceding resistive state. However, when external noise is considered no beneficial effect is observed.Comment: To be published in "Theory and Applications of Nonlinear Dynamics: Model and Design of Complex Systems", Proceedings of ICAND 2012 (Springer, 2013

    Intermittent generalized synchronization in unidirectionally coupled chaotic oscillators

    Full text link
    A new behavior type of unidirectionally coupled chaotic oscillators near the generalized synchronization transition has been detected. It has been shown that the generalized synchronization appearance is preceded by the intermitted behavior: close to threshold parameter value the coupled chaotic systems demonstrate the generalized synchronization most of the time, but there are time intervals during which the synchronized oscillations are interrupted by non-synchronous bursts. This type of the system behavior has been called intermitted generalized synchronization (IGS) by analogy with intermitted lag synchronization (ILS) [Phys. Rev. E \textbf{62}, 7497 (2000)].Comment: 8 pages, 5 figures, using epl.cls; published in Europhysics Letters. 70, 2 (2005) 169-17

    Charmless Three-body Decays of B Mesons

    Full text link
    Charmless 3-body decays of B mesons are studied in the framework of the factorization approach. The nonresonant contributions arising from BP1P2B\to P_1P_2 transitions are evaluated using heavy meson chiral perturbation theory (HMChPT). The momentum dependence of nonresonant amplitudes is assumed to be in the exponential form e^{-\alpha_{NR}} p_B\cdot(p_i+p_j)} so that the HMChPT results are recovered in the soft meson limit pi,pj0p_i, p_j\to 0. In addition, we have identified another large source of the nonresonant signal in the matrix elements of scalar densities, e.g. , which can be constrained from the decay Bˉ0KSKSKS\bar B^0\to K_SK_SK_S or BKKSKSB^-\to K^-K_SK_S. The intermediate vector meson contributions to 3-body decays are identified through the vector current, while the scalar meson resonances are mainly associated with the scalar density. Their effects are described in terms of the Breit-Wigner formalism. Our main results are: (i) All KKK modes are dominated by the nonresonant background. The predicted branching ratios of K+KKS(L)K^+K^-K_{S(L)}, K+KKK^+K^-K^- and KKSKSK^-K_SK_S modes are consistent with the data within errors. (ii) Although the penguin-dominated B0K+KKSB^0\to K^+K^-K_{S} decay is subject to a potentially significant tree pollution, its effective sin2β\sin 2\beta is very similar to that of the KSKSKSK_SK_SK_S mode. However, direct CP asymmetry of the former, being of order -4%, is more prominent than the latter. (iii) For BKππB\to K\pi\pi decays, we found sizable nonresonant contributions in Kπ+πK^-\pi^+\pi^- and Kˉ0π+π\bar K^0\pi^+\pi^- modes, in agreement with the Belle measurements but larger than the BaBar result.Comment: 39 pages, 2 figures, version to appear in PR

    Sampling rare fluctuations of height in the Oslo ricepile model

    Full text link
    We have studied large deviations of the height of the pile from its mean value in the Oslo ricepile model. We sampled these very rare events with probabilities of order 1010010^{-100} by Monte Carlo simulations using importance sampling. These simulations check our qualitative arguement [Phys. Rev. E, {\bf 73}, 021303, 2006] that in steady state of the Oslo ricepile model, the probability of large negative height fluctuations Δh=αL\Delta h=-\alpha L about the mean varies as exp(κα4L3)\exp(-\kappa {\alpha}^4 L^3) as LL \to \infty with α\alpha held fixed, and κ>0\kappa > 0.Comment: 7 pages, 8 figure

    Memory difference control of unknown unstable fixed points: Drifting parameter conditions and delayed measurement

    Full text link
    Difference control schemes for controlling unstable fixed points become important if the exact position of the fixed point is unavailable or moving due to drifting parameters. We propose a memory difference control method for stabilization of a priori unknown unstable fixed points by introducing a memory term. If the amplitude of the control applied in the previous time step is added to the present control signal, fixed points with arbitrary Lyapunov numbers can be controlled. This method is also extended to compensate arbitrary time steps of measurement delay. We show that our method stabilizes orbits of the Chua circuit where ordinary difference control fails.Comment: 5 pages, 8 figures. See also chao-dyn/9810029 (Phys. Rev. E 70, 056225) and nlin.CD/0204031 (Phys. Rev. E 70, 046205

    Phenomenological Consequences of Right-handed Down Squark Mixings

    Get PDF
    The mixings of dRd_R quarks, hidden from view in Standard Model (SM), are naturally the largest if one has an Abelian flavor symmetry. With supersymmetry (SUSY) their effects can surface via d~R\tilde d_R squark loops. Squark and gluino masses are at TeV scale, but they can still induce effects comparable to SM in BdB_d (or BsB_s) mixings, while D0D^0 mixing could be close to recent hints from data. In general, CP phases would be different from SM, as may be indicated by recent B Factory data. Presence of non-standard soft SUSY breakings with large tanβ\tan\beta could enhance bdγb\to d\gamma (or sγs\gamma) transitions.Comment: Version to appear in Phys. Rev. Let

    Non-invertible transformations and spatiotemporal randomness

    Full text link
    We generalize the exact solution to the Bernoulli shift map. Under certain conditions, the generalized functions can produce unpredictable dynamics. We use the properties of the generalized functions to show that certain dynamical systems can generate random dynamics. For instance, the chaotic Chua's circuit coupled to a circuit with a non-invertible I-V characteristic can generate unpredictable dynamics. In general, a nonperiodic time-series with truncated exponential behavior can be converted into unpredictable dynamics using non-invertible transformations. Using a new theoretical framework for chaos and randomness, we investigate some classes of coupled map lattices. We show that, in some cases, these systems can produce completely unpredictable dynamics. In a similar fashion, we explain why some wellknown spatiotemporal systems have been found to produce very complex dynamics in numerical simulations. We discuss real physical systems that can generate random dynamics.Comment: Accepted in International Journal of Bifurcation and Chao

    Structural Characterization of Rapid Thermal Oxidized Si\u3csub\u3e1−x−y\u3c/sub\u3eGe\u3csub\u3ex\u3c/sub\u3eC\u3csub\u3ey\u3c/sub\u3e Alloy Films Grown by Rapid Thermal Chemical Vapor Deposition

    Get PDF
    The structural properties of as-grown and rapid thermal oxidized Si1−x−yGexCy epitaxial layers have been examined using a combination of infrared, x-ray photoelectron, x-ray diffraction, secondary ion mass spectroscopy, and Raman spectroscopy techniques. Carbon incorporation into the Si1−x−yGexCy system can lead to compressive or tensile strain in the film. The structural properties of the oxidized Si1−x−yGexCy film depend on the type of strain (i.e., carbon concentration) of the as-prepared film. For compressive or fully compensated films, the oxidation process drastically reduces the carbon content so that the oxidized films closely resemble to Si1−xGex films. For tensile films, two broad regions, one with carbon content higher and the other lower than that required for full strain compensation, coexist in the oxidized films

    Control of Multi-level Voltage States in a Hysteretic SQUID Ring-Resonator System

    Get PDF
    In this paper we study numerical solutions to the quasi-classical equations of motion for a SQUID ring-radio frequency (rf) resonator system in the regime where the ring is highly hysteretic. In line with experiment, we show that for a suitable choice of of ring circuit parameters the solutions to these equations of motion comprise sets of levels in the rf voltage-current dynamics of the coupled system. We further demonstrate that transitions, both up and down, between these levels can be controlled by voltage pulses applied to the system, thus opening up the possibility of high order (e.g. 10 state), multi-level logic and memory.Comment: 8 pages, 9 figure
    corecore