5,477 research outputs found

    Quantum Hall Effect and Quantum Point Contact in Bilayer-Patched Epitaxial Graphene

    Full text link
    We study an epitaxial graphene monolayer with bilayer inclusions via magnetotransport measurements and scanning gate microscopy at low temperatures. We find that bilayer inclusions can be metallic or insulating depending on the initial and gated carrier density. The metallic bilayers act as equipotential shorts for edge currents, while closely spaced insulating bilayers guide the flow of electrons in the monolayer constriction, which was locally gated using a scanning gate probe.Comment: 5 pages, 5 figure

    Crystal orientation mapping and microindentation reveal anisotropy in Porites skeletons

    Get PDF
    Structures made by scleractinian corals support diverse ocean ecosystems. Despite the importance of coral skeletons and their predicted vulnerability to climate change, few studies have examined the mechanical and crystallographic properties of coral skeletons at the micro- and nano-scales. Here, we investigated the interplay of crystallographic and microarchitectural organization with mechanical anisotropy within Porites skeletons by measuring Young’s modulus and hardness along surfaces transverse and longitudinal to the primary coral growth direction. We observed micro-scale anisotropy, where the transverse surface had greater Young’s modulus and hardness by ∼ 6 GPa and 0.2 GPa, respectively. Electron backscatter diffraction (EBSD) revealed that this surface also had a higher percentage of crystals oriented with the a-axis between ± 30-60∘, relative to the longitudinal surface, and a broader grain size distribution. Within a region containing a sharp microscale gradient in Young’s modulus, nanoscale indentation mapping, energy dispersive spectroscopy (EDS), EBSD, and Raman crystallography were performed. A correlative trend showed higher Young’s modulus and hardness in regions with individual crystal bases (c-axis) facing upward, and in crystal fibers relative to centers of calcification. These relationships highlight the difference in mechanical properties between scales (i.e. crystals, crystal bundles, grains). Observations of crystal orientation and mechanical properties suggest that anisotropy is driven by microscale organization and crystal packing, rather than intrinsic crystal anisotropy. In comparison with previous observations of nanoscale isotropy in corals, our results illustrate the role of hierarchical architecture in coral skeletons and the influence of biotic and abiotic factors on mechanical properties at different scales

    Multilingual advertising in the linguistic landscape of Seoul

    Full text link
    This study examines commercial signs in arguably the two most visited tourism districts in Seoul, namely Myeongdong and Insadong. It focuses on beauty and food businesses and analyzes featured languages and their content and roles in signage. This article argues that business types, specialized marketing focus, and intended sales pitch influence business owners’ linguistic choices. The findings of the study suggest that the beauty industry relies heavily on English in general, but the power of K‐Beauty popularized by ‘Hallyu’ (The Korean Wave) beyond Korea inevitably invites linguistic accommodation in the form of using Chinese and Japanese. In general, the business category of beauty features a more prevalent use of English than the gastronomic business in this study. Moreover, as an area specializing in traditions and cultural heritage, Insadong shows more signs exclusively in Korean than in Myeongdong.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151302/1/weng12427_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151302/2/weng12427.pd

    Bifurcations, Chaos, Controlling and Synchronization of Certain Nonlinear Oscillators

    Get PDF
    In this set of lectures, we review briefly some of the recent developments in the study of the chaotic dynamics of nonlinear oscillators, particularly of damped and driven type. By taking a representative set of examples such as the Duffing, Bonhoeffer-van der Pol and MLC circuit oscillators, we briefly explain the various bifurcations and chaos phenomena associated with these systems. We use numerical and analytical as well as analogue simulation methods to study these systems. Then we point out how controlling of chaotic motions can be effected by algorithmic procedures requiring minimal perturbations. Finally we briefly discuss how synchronization of identically evolving chaotic systems can be achieved and how they can be used in secure communications.Comment: 31 pages (24 figures) LaTeX. To appear Springer Lecture Notes in Physics Please Lakshmanan for figures (e-mail: [email protected]

    Metallic nanoparticles and nanostructures for bio-applications

    Get PDF
    This paper elaborates on approaches of synthesis of Au and Ag nanoparticles (NPs), deposition of colloid onto glass substrate and encapsulation of NPs with silicon dioxide (SiO2) thin shell. As one important bio application of metallic nanoparticles, both solution-based and substrate-based fluorescence enhancement tests are demonstrated

    Signatures of Baryogenesis in the MSSM

    Full text link
    We revisit the electroweak baryogenesis within the context of the minimal supersymmetric standard model (MSSM), studying its potential collider signatures. We find that this mechanism of baryogenesis does not give a new CP violating signal at the BB-factories. The first circumstantial evidence may come from enhanced BsB_s or BdB_d mixing. If a light right-handed scalar top and Higgs are found as required, a linear collider represents the best possibility for confirming the scenario.Comment: 5 pages, 2 figures. Minor typos fixed. Reference Adde

    Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity.

    No full text
    Alzheimer's disease is the most prevalent neurodegenerative disorder leading to progressive cognitive decline. Despite decades of research, understanding AD progression at the molecular level, especially at its early stages, remains elusive. Here, we identified several presymptomatic AD markers by investigating brain proteome changes over the course of neurodegeneration in a transgenic mouse model of AD (3×Tg-AD). We show that one of these markers, heme-binding protein 1 (Hebp1), is elevated in the brains of both 3×Tg-AD mice and patients affected by rapidly-progressing forms of AD. Hebp1, predominantly expressed in neurons, interacts with the mitochondrial contact site complex (MICOS) and exhibits a perimitochondrial localization. Strikingly, wildtype, but not Hebp1-deficient, neurons showed elevated cytotoxicity in response to heme-induced apoptosis. Increased survivability in Hebp1-deficient neurons is conferred by blocking the activation of the mitochondrial-associated caspase signaling pathway. Taken together, our data highlight a role of Hebp1 in progressive neuronal loss during AD progression

    Coexisting Charge-Ordered States with Distinct Driving Mechanisms in Monolayer VSe<sub>2</sub>

    Get PDF
    Thinning crystalline materials to two dimensions (2D) creates a rich playground for electronic phases, including charge, spin, superconducting, and topological order. Bulk materials hosting charge density waves (CDWs), when reduced to ultrathin films, have shown CDW enhancement and tunability. However, charge order confined to only 2D remains elusive. Here we report a distinct charge ordered state emerging in the monolayer limit of 1T-VSe2. Systematic scanning tunneling microscopy experiments reveal that bilayer VSe2 largely retains the bulk electronic structure, hosting a tridirectional CDW. However, monolayer VSe2 -consistently across distinct substrates-exhibits a dimensional crossover, hosting two CDWs with distinct wavelengths and transition temperatures. Electronic structure calculations reveal that while one CDW is bulk-like and arises from the well-known Peierls mechanism, the other is decidedly unconventional. The observed CDW-lattice decoupling and the emergence of a flat band suggest that the second CDW could arise from enhanced electron-electron interactions in the 2D limit. These findings establish monolayer-VSe2 as a host of coexisting charge orders with distinct origins, and enable the tailoring of electronic phenomena via emergent interactions in 2D materials
    corecore