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Abstract 

This paper elaborates on approaches of synthesis of Au and Ag nanoparticles (NPs), deposition of 

colloid onto glass substrate and encapsulation of NPs with silicon dioxide (SiO2) thin shell. As one 

important bio application of metallic nanoparticles, both solution-based and substrate-based 

fluorescence enhancement tests are demonstrated.  

Introduction 

Appearing in stained color glass back to the 17th century, metallic nanoparticles (NPs) have gained 

great attention again in the new century in a variety of technologies. They are often referred to as 

nano-scatterers [1], nano-actuators [2] and nano-stoves [3]. Affected by the quantum confinement, 

NPs behave quite differently from the bulk and atomic state of the same material. They exhibit 

many extraordinary properties in terms of their responses to optical irradiation [4] and chemical 

reactions [5]. These properties are normally dependent on their shapes, sizes and compositions. 

They also exhibit large surface-to-volume ratio and high mechanical strength, which make NPs 

especially suitable for biochemical sensing [6] and optothermal local heating [3, 7].  

 Fluorescence technology is attributed to one of the most astonishing inventions and a vital tool 

in biochemistry and life sciences. As a result of rapid development in these fields, there have been 

endless quests and urges for higher and higher detection sensitivity. Among all the viable 

fluorescence enhancement approaches, the most promising one is Surface Plasmon (SP) enhanced 

fluorescence [8], also termed as Metal-Enhanced Fluorescence [9]. Other novel applications of 

metallic NPs and colloid deposited substrates include Surface Enhanced Raman Spectroscopy [10] 

and Immobilization of functionalized NPs to for nanopatterns [11] which would facilitate the 

integration of surface plasmon and MEMS optofluidic technologies. 

 This paper elaborates on synthesis of Au and Ag NPs, deposition of colloid onto glass slides and 

encapsulation of NPs with silicon dioxide (SiO2) thin shell. Then it demonstrates their applications 

on Metal-Enhanced Fluorescence. 

Localized Surface Plasmon Resonance – Origin of High Absorbance of Metallic Nanoparticles 

Localized Surface Plasmon Resonance (LSPR) arises naturally from the scattering of light by 

metallic NPs. Such scattering phenomenon has an exact solution when the particle has spherical 

shape. In Mie’s formulation, waves are expanded into infinite summations of normal modes, each 

weighted by coefficients of the respective order. The far-field cross-sections that describe the 

scattering effect are then expressed as summations over these coefficients. For particles 
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significantly smaller than the wavelength, phase retardation effect becomes negligible and so does 

the coefficients except that for the lowest order mode, the dipole plasmon mode [12]. The far-field 

cross-sections in this limit can be expressed as follows: 
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The cross-sections simultaneously go to infinity as the common denominator vanishes. At the 

condition of   me 2 , a peak appears in the absorption spectrum of metallic NPs.  

Synthesis of Colloidal Gold and Silver Nanoparticles, Colloid Deposited Glass and Au@SiO2  

 Synthesis of Au and Ag Colloids with Sodium Citrate Reduction Method. Au and Ag are 

selected to compose the NPs due to their large local EM-field enhancement capabilities. They can 

be synthesized routinely in our Lab with the standard sodium citrate reduction method
 
[13]. The 

chemical equation of reducing Au
3+

 to Au
0 
to synthesize citrate capped Au NPs is given below:                   

                   6AuCl4
-
 + C6H8O7 + 5H2O  6CO2 + 24Cl

-
 + 6Au

0
 + 18H

+                                                             
(2) 

Where C6H8O7  is the Citric acid which acts as a reducing agent at 109°C. The size of the Au NPs is 

inversely proportional to the amount of citrate added. STEM images of Au NPs, on copper grid, 

with different diameter are given from Figs. 1 to 4. Similarly, Ag colloid is reduced from AgNO3.  

 Deposition of Au/Ag Colloid on Glass Substrates. Part of a cleaned glass slide is be 

functionalized with 3-aminopropyl-trimethoxysilane (APTES). Then, the functionalized glass slide 

is immersed in Au colloid, with estimated colloidal concentration of 1.5×10
7
 particles per ml, for at 

least four hours. Hence, the Au NPs are immobilized onto the glass slides. For glass with higher 

surface coverage of NPs, more concentrated colloid (by removing 50~70% supernatant) can be used 

for deposition. Fig. 5 is a AFM graph of a glass slide with NPs, while Figs. 6 to 8 are SEM images 

of Au or Ag colloid deposited glass slides. Lastly, a SiO2 film is sputtered over the randomly 

distributed NPs in an RF chamber of the Balzer sputtering system with the argon flow rate of  

25 sccm. The SiO2 layer is changed from 15 to 25 nm for Au NPs and 5 nm to 15 nm for Ag NPs.  

    
Fig. 1 Au NPs Dav = 14 nm 

NPs on copper grid 

Fig. 2 Au NPs Dav = 41 nm 

by direct synthesis 

Fig 3: Au NPs Dav = 47.2 nm 

by direct synthesis 

Fig 4: Au NPs Dav = 53 nm 

by seed (14 nm) mediators 

    
Fig. 5 AFM image of Au 

deposited glass, Dav= 20 nm 

Fig. 6 Au deposited glass 

Dav = 17 nm 

Fig. 7 Au deposited glass with 

high concentration Dav=60 nm 

Fig. 8 Ag deposited glass 

NP Dav = 65 nm 

 Synthesis of SiO2 Encapsulated Nanoparticles (Au@SiO2). The metallic NPs are to be used 

with proteins and fluorophores. If proteins bind directly to metallic surface, unfolding would occur. 

If fluorophore molecules attach to metal surface directly, they will be fully or partially quenched 

with much weaker fluorescence emission. Thus it is essential to have a spacer layer/shell with 

controlled thickness to maintain the optimum distance in between one NP and adjacent fluorophore 
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molecules. SiO2 is selected because of its superior chemical stability and biomolecule affinity. 

Au@SiO2 NPs with different shell thikness are shown in Figs 9 to 14. For 32.6 nm and 23.5 nm 

thick shells shown in Figs. 11 and Fig. 12, the silica coating process takes two days and TEOS are 

added in intervals. A total of 0.4 ml and 0.2 ml of 10 mM TEOS, dissolved in isopropanol, are 

added respectively into the isopropanol solution of citrate-capped 50nm Au NPs. The images shown 

in Figs. 10, 13, & 14 are obtained by one time addition of TEOS and gentle stirred for 15~18 hours.  

      
Fig. 9 Au@SiO2 

Shell Tav=58.5 nm  

Fig. 10 Au@SiO2 

shell Tav=51.2 nm 

Fig. 11 Au@SiO2 

shell Tav = 32.6 nm 

Fig. 12 Au@SiO2 

shell Tav = 23.5 nm 

Fig. 13 Au@SiO2 

shell Tav = 19.5 nm 

Fig. 14 Au@SiO2 

shell Tav = 6.2 nm 
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Fig. 15 Absorption spectra of Au NPs with different diameters and 

one batch of nano rods 

Fig. 16 Absorption spectra of Au@SiO2 NPs with different 

shell thickness show peak red shift from the peak of Au NPs 

Demonstration of Metal-Enhanced Fluorescence (MEF) 

A fluorophore molecule in the excited state acts as an oscillating dipole. The average distance 

between a metallic NP and nearby fluorophore molecules governs the behavior of adjacent 

fluorophores for either being quenched or enhanced. The interaction has a number of useful effects 

that lead to increases in Quantum Yield (QY), photo stability and resonance energy transfer range 

and also the decrease in lifetime. These changes can result in increased sensitivity and signal-to-

noise ratio. To demonstrate this effect, fluorescence enhancement experiments with above described 

colloids and colloid deposited glass substrate are conducted in both dry state and wet state. 

 Dry State. We immobilize Au or Ag NPs on APTES functionalized SiO2 thin film which is 

sputtered on top of NPs with varying thickness from 5 nm to 30 nm on glass slide. The glass slides 

are then incubated with dye conjugated BSA overnight in darkness at 4°C. After washing, the 

fluorescence emmision of BSA-Rhodamine B, physisorptioned on the glass slide, is observed and 

an image is captured by a fluorescence microscope with attached CCD. The image shown in Fig. 17 

is taken on a glass slide with 53.0 nm Au NPs covered by 25nm SiO2 film. The fluorescence image 

in Fig. 18 is taken from the control with the same BSA-Rhodamine B solution being absorbed on 

bare glass after overnight incubation. Using an image processing S/W named ImageJ, comparation 

of line intensity profiles from Figs. 17 and 18 prove that the fluorescence emission from Rhodamine 

B is enhanced to 3 times than the emission from the control. 

 Wet State. SiO2 encapsulated Au or Ag colloid with 2 to 5 times of the original concentration is 

incubated in darkness with the BSA-dye solution of varying relative concentrations for at least 30 

minutes in a microwell plate. Control solution is kept in a separate well on the same microwell 

plate. The fluorescence image in Fig 19, captured by the fluorescenc microscope, is compared with 

the control in Fig. 20 and the intensity profiles are analyzed with ImageJ. The results show 

enhancement of about 2 times. The fluorescence emission spectrum is also scanned by a microplate 

reader. The enhancement factor at emission peak agrees with that from the fluorescence images. 
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 There is a huge potential for higher fluorescence enhancement by changing all the variables in 

narrower intervals. The variables include size, shape and composition of NPs, SiO2 shell/film 

thickness, approaches of dye adhesion to NPs, pH of solutions and temperature during incubation. 
 

    

Fig. 17  Dry State 

BSA-Rhodamine B on glass 

with 53 nm Au NP covered  

by 25 nm SiO2 film,  

24 hour incubation 

Fig. 18 Dry state control 

BSA-Rhodamine B with the 

same concentration, 

incubated on glass 24 hours 

Fig. 19 Wet State 

mixed solution of  

Au@SiO2 and BSA-FITC, 

24 hour incubation, 

DAu = 17 nm, TSiO2= 25 nm 

Fig. 20 Wet state control BSA-

FITC solution with the same 

concentration, incubated on 

glass 24 hours 

 

Summary 

In this paper, we report our effort and approaches for controlling the size of Au and Ag NPs in 

chemical reduction assays, and the thickness of the SiO2 shell during the synthesizing process of 

Au@SiO2, as well as the thickness of the sputtered thin film on colloid deposited glass substrate. 

We also report the application of MEF using metallic nano colloids and colloid-deposited glass. 

Both solution-based and glass-based fluorescence tests show promising fluorescence enhancement. 
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