71 research outputs found

    Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges

    Get PDF
    Plant root hair formation is initiated when specialized elongating root epidermis cells (trichoblasts) assemble distinct domains at the plasma membrane/cell wall cell periphery complexes facing the root surface. These localities show accumulation of expansin and progressively transform into tip-growing root hair apices. Experimentation showed that trichoblasts made devoid of microtubules (MTs) were unaffected in root hair formation, whereas those depleted of F-actin by the G-actin sequestering agent latrunculin B had their root hair formation blocked after the bulge formation stage. In accordance with this, MTs are naturally depleted from early outgrowing bulges in which dense F-actin meshworks accumulate. These F-actin caps remain associated with tips of emerging and growing root hairs. Constitutive expression of the GFP-mouse talin fusion protein in transgenic Arabidopsis, which visualizes all classes of F-actin in a noninvasive mode, allowed in vivo confirmation of the presence of distinct F-actin meshworks within outgrowing bulges and at tips of young root hairs. Profilin accumulates, at both the protein and the mRNA levels, within F-actin-enriched bulges and at tips of emerging hairs. ER-based calreticulin and HDEL proteins also accumulate within outgrowing bulges and remain enriched at tips of emerging hairs. All this suggests that installation of the actin-based tip growth machinery takes place only after expansin-associated bulge formation and requires assembly of profilin-supported dynamic F-actin meshworks

    Inhibiting cardiac myeloperoxidase alleviates the relaxation defect in hypertrophic cardiomyocytes.

    Get PDF
    AIMS: Hypertrophic cardiomyopathy (HCM) is characterised by cardiomyocyte hypertrophy and disarray, and myocardial stiffness due to interstitial fibrosis, which result in impaired left ventricular filling and diastolic dysfunction. The latter manifests as exercise intolerance, angina, and dyspnoea. There is currently no specific treatment for improving diastolic function in HCM. Here, we investigated whether myeloperoxidase (MPO) is expressed in cardiomyocytes and provides a novel therapeutic target for alleviating diastolic dysfunction in HCM. METHODS AND RESULTS: Human cardiomyocytes derived from control induced pluripotent stem cells (iPSC-CMs) were shown to express MPO, with MPO levels being increased in iPSC-CMs generated from two HCM patients harbouring sarcomeric mutations in the MYBPC3 and MYH7 genes. The presence of cardiomyocyte MPO was associated with higher chlorination and peroxidation activity, increased levels of 3-chlorotyrosine-modified cardiac myosin binding protein-C (MYBPC3), attenuated phosphorylation of MYBPC3 at Ser-282, perturbed calcium signalling, and impaired cardiomyocyte relaxation. Interestingly, treatment with the MPO inhibitor, AZD5904, reduced 3-chlorotyrosine-modified MYBPC3 levels, restored MYBPC3 phosphorylation, and alleviated the calcium signalling and relaxation defects. Finally, we found that MPO protein was expressed in healthy adult murine and human cardiomyocytes, and MPO levels were increased in diseased hearts with left ventricular hypertrophy. CONCLUSION: This study demonstrates that MPO inhibition alleviates the relaxation defect in hypertrophic iPSC-CMs through MYBPC3 phosphorylation. These findings highlight cardiomyocyte MPO as a novel therapeutic target for improving myocardial relaxation associated with HCM, a treatment strategy which can be readily investigated in the clinical setting, given that MPO inhibitors are already available for clinical testing. TRANSLATIONAL PERSPECTIVE: There are currently no specific therapies for improving diastolic function in patients with HCM. We show for the first time that myeloperoxidase (MPO) is present in and is up-regulated in cardiomyocytes derived from human iPSCs obtained from HCM patients, where it impairs cardiomyocyte relaxation by reducing phosphorylation of cardiac MYBPC3. Treatment with the MPO inhibitor, AZD5904, restored MYBPC3 phosphorylation and alleviated the relaxation defect, demonstrating cardiomyocyte MPO to be a novel therapeutic target for improving diastolic function in HCM, a treatment strategy which can be evaluated in HCM patients given that MPO inhibitors are already available for clinical testing

    Growth rate, health and welfare in a dairy herd with natural suckling until 6–8 weeks of age: a case report

    Get PDF
    Over a period of two years, growth rate and health were measured for dairy calves allowed to suckle their mothers up to 6–8 weeks of age. Thirty-one calves were weighted weekly, and the mean daily growth rate was 1.2 ± 0.03 kg from birth up to 13 weeks of age. Illness in calves and young stock was not observed. In the cows, the mean incidences of ketosis, displaced abomasum, puerperal paresis, mastitis, teat injury and retained placenta were 0, 0, 8, 22, 1 and 1%, respectively, during a 6-year period. The mean daily gain of 56 growing bulls was 1.4 kg when slaughtered at 15 months of age, which is higher than the mean daily gain of 0.95 kg in the population. Probiotics, hormones and vaccines were not used, and antibiotics were only used for treating illness. The present study indicates many advantages and few problems when dairy calves are penned together with the cows and allowed natural feeding up to 6–8 weeks of age. This production system was easy to manage, preferred by the farmer, and may satisfy the public concern regarding the practice of immediate separation of cow and calf in commercial milk production

    CCL2-driven inflammation increases mammary gland stromal density and cancer susceptibility in a transgenic mouse model.

    Get PDF
    Abstract Background Macrophages play diverse roles in mammary gland development and breast cancer. CC-chemokine ligand 2 (CCL2) is an inflammatory cytokine that recruits macrophages to sites of injury. Although CCL2 has been detected in human and mouse mammary epithelium, its role in regulating mammary gland development and cancer risk has not been explored. Methods Transgenic mice were generated wherein CCL2 is driven by the mammary epithelial cell-specific mouse mammary tumour virus 206 (MMTV) promoter. Estrous cycles were tracked in adult transgenic and non-transgenic FVB mice, and mammary glands collected at the four different stages of the cycle. Dissected mammary glands were assessed for cyclical morphological changes, proliferation and apoptosis of epithelium, macrophage abundance and collagen deposition, and mRNA encoding matrix remodelling enzymes. Another cohort of control and transgenic mice received carcinogen 7,12-Dimethylbenz(a)anthracene (DMBA) and tumour development was monitored weekly. CCL2 protein was also quantified in paired samples of human breast tissue with high and low mammographic density. Results Overexpression of CCL2 in the mammary epithelium resulted in an increased number of macrophages, increased density of stroma and collagen and elevated mRNA encoding matrix remodelling enzymes lysyl oxidase (LOX) and tissue inhibitor of matrix metalloproteinases (TIMP)3 compared to non-transgenic controls. Transgenic mice also exhibited increased susceptibility to development of DMBA-induced mammary tumours. In a paired sample cohort of human breast tissue, abundance of epithelial-cell-associated CCL2 was higher in breast tissue of high mammographic density compared to tissue of low mammographic density. Conclusions Constitutive expression of CCL2 by the mouse mammary epithelium induces a state of low level chronic inflammation that increases stromal density and elevates cancer risk. We propose that CCL2-driven inflammation contributes to the increased risk of breast cancer observed in women with high mammographic density

    Defining Global Benchmarks for Laparoscopic Liver Resections: An International Multicenter Study

    Get PDF

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
    corecore