129 research outputs found

    Genetic basis of the very short life cycle of β€˜Apogee’ wheat

    Get PDF
    Background: β€˜Apogee’ has a very short life cycle among wheat cultivars (flowering 25 days after planting under a long day and without vernalization), and it is a unique genetic material that can be used to accelerate cycling breeding lines. However, little is known about the genetic basis of the super-short life of Apogee wheat. Results: In this study, Apogee was crossed with a strong winter wheat cultivar β€˜Overland’, and 858 F2 plants were generated and tested in a greenhouse under constant warm temperature and long days. Apogee wheat was found to have the early alleles for four flowering time genes, which were ranked in the order of vrn-A1 \u3e VRN-B1 \u3e vrn- D3 \u3e PPD-D1 according to their effect intensity. All these Apogee alleles for early flowering showed complete or partial dominance effects in the F2 population. Surprisingly, Apogee was found to have the same alleles at vrn-A1a and vrn-D3a for early flowering as observed in winter wheat cultivar β€˜Jagger.’ It was also found that the vrn-A1a gene was epistatic to VRN-B1 and vrn-D3. The dominant vrn-D3a alone was not sufficient to cause the transition from vegetative to reproductive development in winter plants without vernalization but was able to accelerate flowering in those plants that carry the vrn-A1a or Vrn-B1 alleles. The genetic effects of the vernalization and photoperiod genes were validated in Apogee x Overland F3 populations. Conclusion: VRN-A1, VRN-B1, VRN-D3, and PPD-D1 are the major genes that enabled Apogee to produce the very short life cycle. This study greatly advanced the molecular understanding of the multiple flowering genes under different genetic backgrounds and provided useful molecular tools that can be used to accelerate winter wheat breeding schemes

    A Gene Expression Signature of Acquired Chemoresistance to Cisplatin and Fluorouracil Combination Chemotherapy in Gastric Cancer Patients

    Get PDF
    We initiated a prospective trial to identify transcriptional alterations associated with acquired chemotherapy resistance from pre- and post-biopsy samples from the same patient and uncover potential molecular pathways involved in treatment failure to help guide therapeutic alternatives.A prospective, high-throughput transcriptional profiling study was performed using endoscopic biopsy samples from 123 metastatic gastric cancer patients prior to cisplatin and fluorouracil (CF) combination chemotherapy. 22 patients who initially responded to CF were re-biopsied after they developed resistance to CF. An acquired chemotherapy resistance signature was identified by analyzing the gene expression profiles from the matched pre- and post-CF treated samples. The acquired resistance signature was able to segregate a separate cohort of 101 newly-diagnosed gastric cancer patients according to the time to progression after CF. Hierarchical clustering using a 633-gene acquired resistance signature (feature selection at P<0.01) separated the 101 pretreatment patient samples into two groups with significantly different times to progression (2.5 vs. 4.7 months). This 633-gene signature included the upregulation of AKT1, EIF4B, and RPS6 (mTOR pathway), DNA repair and drug metabolism genes, and was enriched for genes overexpressed in embryonic stem cell signatures. A 72-gene acquired resistance signature (a subset of the 633 gene signature also identified in ES cell-related gene sets) was an independent predictor for time to progression (adjusted P = 0.011) and survival (adjusted P = 0.034) of these 101 patients.This signature may offer new insights into identifying new targets and therapies required to overcome the acquired resistance of gastric cancer to CF

    Steroid receptor coactivator 1 deficiency increases MMTV-neu mediated tumor latency and differentiation specific gene expression, decreases metastasis, and inhibits response to PPAR ligands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The peroxisome proliferator activated receptor (PPAR) subgroup of the nuclear hormone receptor superfamily is activated by a variety of natural and synthetic ligands. PPARs can heterodimerize with retinoid X receptors, which have homology to other members of the nuclear receptor superfamily. Ligand binding to PPAR/RXRs results in recruitment of transcriptional coactivator proteins such as steroid receptor coactivator 1 (SRC-1) and CREB binding protein (CBP). Both SRC-1 and CBP are histone acetyltransferases, which by modifying nucleosomal histones, produce more open chromatin structure and increase transcriptional activity. Nuclear hormone receptors can recruit limiting amounts of coactivators from other transcription factor binding sites such as AP-1, thereby inhibiting the activity of AP-1 target genes. PPAR and RXR ligands have been used in experimental breast cancer therapy. The role of coactivator expression in mammary tumorigenesis and response to drug therapy has been the subject of recent studies.</p> <p>Methods</p> <p>We examined the effects of loss of SRC-1 on MMTV-neu mediated mammary tumorigenesis.</p> <p>Results</p> <p>SRC-1 null mutation in mammary tumor prone mice increased the tumor latency period, reduced tumor proliferation index and metastasis, inhibited response to PPAR and RXR ligands, and induced genes involved in mammary gland differentiation. We also examined human breast cancer cell lines overexpressing SRC-1 or CBP. Coactivator overexpression increased cellular proliferation with resistance to PPAR and RXR ligands and remodeled chromatin of the proximal epidermal growth factor receptor promoter.</p> <p>Conclusions</p> <p>These results indicate that histone acetyltransferases play key roles in mammary tumorigenesis and response to anti-proliferative therapies.</p

    J-Integral Calculation by Finite Element Processing of Measured Full-Field Surface Displacements

    Get PDF
    Β© 2017 The Author(s)A novel method has been developed based on the conjoint use of digital image correlation to measure full field displacements and finite element simulations to extract the strain energy release rate of surface cracks. In this approach, a finite element model with imported full-field displacements measured by DIC is solved and the J-integral is calculated, without knowledge of the specimen geometry and applied loads. This can be done even in a specimen that develops crack tip plasticity, if the elastic and yield behaviour of the material are known. The application of the method is demonstrated in an analysis of a fatigue crack, introduced to an aluminium alloy compact tension specimen (Al 2024, T351 heat condition)

    Microwave-Assisted Synthesis of Titania Nanocubes, Nanospheres and Nanorods for Photocatalytic Dye Degradation

    Get PDF
    TiO2nanostructures with fascinating morphologies like cubes, spheres, and rods were synthesized by a simple microwave irradiation technique. Tuning of different morphologies was achieved by changing the pH and the nature of the medium or the precipitating agent. As-synthesized titania nanostructures were characterized by X-ray diffraction (XRD), UV–visible spectroscopy, infrared spectroscopy (IR), BET surface area, photoluminescence (PL), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques. Photocatalytic dye degradation studies were conducted using methylene blue under ultraviolet light irradiation. Dye degradation ability for nanocubes was found to be superior to the spheres and the rods and can be attributed to the observed high surface area of nanocubes. As-synthesized titania nanostructures have shown higher photocatalytic activity than the commercial photocatalyst Degussa P25 TiO2

    Selected isotope ratio measurements of light metallic elements (Li, Mg, Ca, and Cu) by multiple collector ICP-MS

    Get PDF
    The unique capabilities of multiple collector inductively coupled mass spectrometry (MC-ICP-MS) for high precision isotope ratio measurements in light elements as Li, Mg, Ca, and Cu are reviewed in this paper. These elements have been intensively studied at the Geological Survey of Israel (GSI) and other laboratories over the past few years, and the methods used to obtain high precision isotope analyses are discussed in detail. The scientific study of isotopic fractionation of these elements is significant for achieving a better understanding of geochemical and biochemical processes in nature and the environment

    Immunological Mechanisms Mediating Hantavirus Persistence in Rodent Reservoirs

    Get PDF
    Hantaviruses, similar to several emerging zoonotic viruses, persistently infect their natural reservoir hosts, without causing overt signs of disease. Spillover to incidental human hosts results in morbidity and mortality mediated by excessive proinflammatory and cellular immune responses. The mechanisms mediating the persistence of hantaviruses and the absence of clinical symptoms in rodent reservoirs are only starting to be uncovered. Recent studies indicate that during hantavirus infection, proinflammatory and antiviral responses are reduced and regulatory responses are elevated at sites of increased virus replication in rodents. The recent discovery of structural and non-structural proteins that suppress type I interferon responses in humans suggests that immune responses in rodent hosts could be mediated directly by the virus. Alternatively, several host factors, including sex steroids, glucocorticoids, and genetic factors, are reported to alter host susceptibility and may contribute to persistence of hantaviruses in rodents. Humans and reservoir hosts differ in infection outcomes and in immune responses to hantavirus infection; thus, understanding the mechanisms mediating viral persistence and the absence of disease in rodents may provide insight into the prevention and treatment of disease in humans. Consideration of the coevolutionary mechanisms mediating hantaviral persistence and rodent host survival is providing insight into the mechanisms by which zoonotic viruses have remained in the environment for millions of years and continue to be transmitted to humans

    Measurement of the matrix element for the decay Ξ·β€²β†’Ξ·Ο€ +Ο€ -

    Get PDF
    The Dalitz plot of Ξ·βŠƒβ€²β†’Ξ·Ο€βŠƒ+Ο€βŠƒ- decay is studied using (225.2Β±2.8)Γ—106 J/ψ events collected with the BESIII detector at the BEPCII eβŠƒ+eβŠƒ- collider. With the largest sample of Ξ·βŠƒβ€² decays to date, the parameters of the Dalitz plot are determined in a generalized and a linear representation. Also, the branching fraction of J/Οˆβ†’Ξ³Ξ·βŠƒβ€² is determined to be (4.84Β±0.03Β±0.24)Γ—10βŠƒ-3, where the first error is statistical and the second systematic. Β© 2011 American Physical Society.published_or_final_versio
    • …
    corecore