29,345 research outputs found
A novel implementation of method of optimality criterion in synthesizing spacecraft structures with natural frequency constraints
In the design of spacecraft structures, fine tuning the structure to achieve minimum weight with natural frequency constraints is a time consuming process. Here, a novel implementation of the method of optimality criterion (OC) is developed. In this new implementation of OC, the free vibration analysis results are used to compute the eigenvalue sensitivity data required for the formulation. Specifically, the modal elemental strain and kinetic energies are used. Additionally, normalized design parameters are introduced as a second level linking that allows design variables of different values to be linked together. With the use of this novel formulation, synthesis of structures with natural frequency constraint can be carried out manually using modal analysis results. Design examples are presented to illustrate this novel implementation of the optimality criterion method
Propellant dynamic problems in space shuttle vehicles, part 2 Final report
Liquid propellant dynamic problems in space shuttle vehicle
Charge dynamics of the spin-density-wave state in BaFeAs
We report on a thorough optical investigation of BaFeAs over a broad
spectral range and as a function of temperature, focusing our attention on its
spin-density-wave (SDW) phase transition at K. While
BaFeAs remains metallic at all temperatures, we observe a depletion in
the far infrared energy interval of the optical conductivity below ,
ascribed to the formation of a pseudogap-like feature in the excitation
spectrum. This is accompanied by the narrowing of the Drude term consistent
with the transport results and suggestive of suppression of scattering
channels in the SDW state. About 20% of the spectral weight in the far infrared
energy interval is affected by the SDW phase transition
Anisotropic charge dynamics in detwinned Ba(FeCo)As
We investigate the optical conductivity as a function of temperature with
light polarized along the in-plane orthorhombic - and -axes of
Ba(FeCo)As for =0 and 2.5 under uniaxial pressure.
The charge dynamics at low frequencies on these detwinned, single domain
compounds tracks the anisotropic transport properties across their
structural and magnetic phase transitions. Our findings allow us to estimate
the dichroism, which extends to relatively high frequencies. These results are
consistent with a scenario in which orbital order plays a significant role in
the tetragonal-to-orthorhombic structural transition
Understanding the tsunami with a simple model
In this paper, we use the approximation of shallow water waves (Margaritondo
G 2005 Eur. J. Phys. 26 401) to understand the behaviour of a tsunami in a
variable depth. We deduce the shallow water wave equation and the continuity
equation that must be satisfied when a wave encounters a discontinuity in the
sea depth. A short explanation about how the tsunami hit the west coast of
India is given based on the refraction phenomenon. Our procedure also includes
a simple numerical calculation suitable for undergraduate students in physics
and engineering
Observation of Fermi-energy dependent unitary impurity resonances in a strong topological insulator Bi_2Se_3 with scanning tunneling spectroscopy
Scanning tunneling spectroscopic studies of Bi_2Se_3 epitaxial films on Si (111) substrates reveal highly localized unitary impurity resonances associated with non-magnetic quantum impurities. The strength of the resonances depends on the energy difference between the Fermi level (E_F) and the Dirac point (E_D) and diverges as E_F approaches E_D. The Dirac-cone surface state of the host recovers within ~ 2Å spatial distance from impurities, suggesting robust topological protection of the surface state of topological insulators against high-density impurities that preserve time reversal symmetry
Self-reported domain-specific and accelerometer-based physical activity and sedentary behaviour in relation to psychological distress among an urban Asian population
Background: The interpretation of previous studies on the association of physical activity and sedentary behaviour with psychological health is limited by the use of mostly self-reported physical activity and sedentary behaviour, and a focus on Western populations. We aimed to explore the association of self-reported and devise-based measures of physical activity and sedentary behaviour domains on psychological distress in an urban multi-ethnic Asian population.
Methods: From a population-based cross-sectional study of adults aged 18-79 years, data were used from an overall sample (n = 2653) with complete self-reported total physical activity/sedentary behaviour and domain-specific physical activity data, and a subsample (n = 703) with self-reported domain-specific sedentary behaviour and accelerometry data. Physical activity and sedentary behaviour data were collected using the Global Physical Activity Questionnaire (GPAQ), a domain-specific sedentary behaviour questionnaire and accelerometers. The Kessler Screening Scale (K6) and General Health Questionnaire (GHQ-12) were used to assess psychological distress. Logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals, adjusted for socio-demographic and lifestyle characteristics.
Results: The sample comprised 45.0% men (median age = 45.0 years). The prevalence of psychological distress based on the K6 and GHQ-12 was 8.4% and 21.7%, respectively. In the adjusted model, higher levels of self-reported moderate-to-vigorous physical activity (MVPA) were associated with significantly higher odds for K6 (OR = 1.47 [1.03-2.10]; p-trend = 0.03) but not GHQ-12 (OR = 0.97 [0.77-1.23]; p-trend = 0.79), when comparing the highest with the lowest tertile. Accelerometry-assessed MVPA was not significantly associated with K6 (p-trend = 0.50) nor GHQ-12 (p-trend = 0.74). The highest tertile of leisure-time physical activity, but not work- or transport-domain activity, was associated with less psychological distress using K6 (OR = 0.65 [0.43-0.97]; p-trend = 0.02) and GHQ-12 (OR = 0.72 [0.55-0.93]; p-trend = 0.01). Self-reported sedentary behaviour was not associated with K6 (p-trend = 0.90) and GHQ-12 (p-trend = 0.33). The highest tertile of accelerometry-assessed sedentary behaviour was associated with significantly higher odds for K6 (OR = 1.93 [1.00-3.75]; p-trend = 0.04), but not GHQ-12 (OR = 1.34 [0.86-2.08]; p-trend = 0.18).
Conclusions: Higher levels of leisure-time physical activity and lower levels of accelerometer-based sedentary behaviour were associated with lower psychological distress. This study underscores the importance of assessing accelerometer-based and domain-specific activity in relation to mental health, instead of solely focusing on total volume of activity
Temperature dependence of the excitation spectrum in the charge-density-wave ErTe and HoTe systems
We provide optical reflectivity data collected over a broad spectral range
and as a function of temperature on the ErTe and HoTe materials, which
undergo two consecutive charge-density-wave (CDW) phase transitions at
= 265 and 288 K and at = 157 and 110 K, respectively. We
observe the temperature dependence of both the Drude component, due to the
itinerant charge carriers, and the single-particle peak, ascribed to the
charge-density-wave gap excitation. The CDW gap progressively opens while the
metallic component gets narrow with decreasing temperature. An important
fraction of the whole Fermi surface seems to be affected by the CDW phase
transitions. It turns out that the temperature and the previously investigated
pressure dependence of the most relevant CDW parameters share several common
features and behaviors. Particularly, the order parameter of the CDW state is
in general agreement with the predictions of the BCS theory
- …