76 research outputs found

    A Wideband Differentially Fed Dual-Polarized Antenna with Stable Radiation Pattern for Base Stations

    Get PDF
    © 1963-2012 IEEE. A new wideband differentially fed dual-polarized antenna with stable radiation pattern for base stations is proposed and studied. A cross-shaped feeding structure is specially designed to fit the differentially fed scheme and four parasitic loop elements are employed to achieve a wide impedance bandwidth. A stable antenna gain and a stable radiation pattern are realized by using a rectangular cavity-shaped reflector instead of a planar one. A detailed parametric study was performed to optimize the antenna's performances. After that, a prototype was fabricated and tested. Measured results show that the antenna achieves a wide impedance bandwidth of 52% with differential standing-wave ratio <1.5 from 1.7 to 2.9 GHz and a high differential port-to-port isolation of better than 26.3 dB within the operating frequency bandwidth. A stable antenna gain (≈8 dBi) and a stable radiation pattern with 3-dB beamwidth of 65° ±5° were also found over the operating frequencies. Moreover, the proposed antenna can be easily built by using printed circuit board fabrication technique due to its compact and planar structure

    Study on the anti-cerebral ischemia effect of borneol and its mechanism

    Get PDF
    Background: Borneol is the processed item from resin of Dryobalanops aromatica Gaertn. f. It can enhance the activity of antioxidant enzymes in brain tissue and reduce inflammatory response by improving the energy metabolism of ischemic brain regions, and thereby reduces brain tissue damage. The objective of this paper was to study the anti-cerebral ischemia effect of borneol and its mechanism.Materials and Methods: The anti-cerebral ischemia effect of borneol was studied by ligation of bilateral common carotid arteries (CCA), and vagus nerves in mice and the acute cerebral ischemia-reperfusion experiment in rats.Results: Compared with the blank and solvent control groups, the borneol low-; medium-; and high-dose groups can significantly prolong the gasping time of mice after decapitation, and extend the survival time of mice after ligation of bilateral CCA, and vagus nerves.Conclusion: Compared with the Xueshuantong injection group, the prolongation of survival time of mice after ligation of bilateral CCA, and vagus nerves was more apparent in the high-dose borneol experimental group; each experimental group can significantly reduce the number of leukocyte infiltration, the number of ICAM-1-positive vessels, as well as the number of TNF-α-positive cells.Conclusion: Borneol has an anti-cerebral ischemia effect.Key words: borneol; cerebral ischemia-reperfusion; IL-1β, TNF-α; ICAM-

    Triple-Mode Cavity Bandpass Filter on Doublet with Controllable Transmission Zeros

    Full text link
    © 2013 IEEE. On the basis of doublet and its properties, a class of multiple-mode narrow band bandpasss filter is designed and fabricated by simultaneously exploiting the three resonant modes in a single rectangular cavity: TE101, TE011, and TM110 modes. The input/output ports of the proposed filter are fed by coupling a microstrip line to a slot on the side wall of a rectangular cavity. Different modes are excited by changing the position and shape of the two slots at input and output of the rectangular cavity without any intra-cavity coupling. Besides three poles within the passband, a pair of transmission zeros (TZs) is achieved, which can be controlled independently by setting the positions of the two TZs at the lower and/or upper stopband. High stopband attenuation and high filtering selectivity are achieved by considerably allocating three transmission poles and two zeros. In order to verify the proposed theory, two filter prototypes are fabricated and measured

    Individually Frequency Tunable Dual- and Triple-band Filters in a Single Cavity

    Full text link
    © 2013 IEEE. This paper presents a new class of second-order individually and continuously tunable dual- and triple-band bandpass filters in a single metal cavity. Each passband is realized by two identical metal posts. These dual- and triple-band tunable filters are achieved by putting two or three identical sets of metal-post pair in a single metal cavity. Metal screws are co-designed as a part of the metal posts to control their insertion depth inside the cavity. In this way, the resonant frequencies can be continuously controlled and designed at the desired frequency bands. Moreover, the distance between the two metal posts in a post pair can be freely tuned. Thus, the external quality factor (Qe) and coupling coefficient (k) between the adjacent modes can be easily adjusted to meet the specified requirement in synthesis design. At the bottom of the cavity, some grooves are used to extend the tunable frequency range and make the resonant frequency linearly varied with the height of the metal post. The center frequency of each passband can be independently tuned with a frequency range of 0.8-3.2 GHz and tunable ratio of 4. Finally, the continuously tunable dual- and triple-band bandpass filters prototypes with second order response are designed and fabricated, of which each passband can be individually tuned with a large tuning range

    A New Compact and High Gain Circularly-Polarized Slot Antenna Array for Ku-Band Mobile Satellite TV Reception

    Full text link
    © 2013 IEEE. A compact and high-gain SIW-fed circularly polarized (CP) slot-antenna array with a stacked feed structure is presented for the application of Ku-band high-data-rate satellite communications. First, a novel probe-fed SIW cavity with four slots etched on the top surface is proposed as a high-gain radiating element for the array. The four slots in the cavity act as a 2\times2 array, and its directivity is 2.15 and 1.43 dB greater than that of the cavity-backed antenna of the same size using ring slot and split ring slot, respectively. Second, a compact 1-4 SIW power divider is designed for exciting a subarray. Third, the 2\times2 subarray is further expanded to an 8\times16 array by adopting an additional layer of 1-32 SIW feeding network to meet the gain requirement of the Ku-band mobile satellite TV reception. Finally, experiments are carried out to verify the designed prototypes. Measured results show that proposed 128-element array has a relative impedance bandwidth of 4.8% (11.84 to 12.42 GHz), AR bandwidth of 130 MHz (12.01 to 12.14 GHz), and a peak gain of 26.8 dBic at 12.06 GHz. Owing to the simple feeding networks and the compact radiating element, the antenna has a compact size of 6.04\lambda 0 \times 11.96\lambda 0 \times 0.1\lambda 0. Experimental results show that the proposed CP antenna array is suitable for applications of Ku-band mobile satellite TV reception

    Plasma hydrogenation of strained Si/SiGe/Si heterostructure for layer transfer without ion implantation

    Get PDF
    We have developed an innovative approach without the use of ion implantation to transfer a high-quality thin Si layer for the fabrication of silicon-on-insulator wafers. The technique uses a buried strained SiGe layer, a few nanometers in thickness, to provide H trapping centers. In conjunction with H plasma hydrogenation, lift-off of the top Si layer can be realized with cleavage occurring at the depth of the strained SiGe layer. This technique avoids irradiation damage within the top Si layer that typically results from ion implantation used to create H trapping regions in the conventional ion-cut method. We explain the strain-facilitated layer transfer as being due to preferential vacancy aggregation within the strained layer and subsequent trapping of hydrogen, which lead to cracking in a well controlled manner. © 2005 American Institute of Physics

    Vibrio cholerae Proteome-Wide Screen for Immunostimulatory Proteins Identifies Phosphatidylserine Decarboxylase as a Novel Toll-Like Receptor 4 Agonist

    Get PDF
    Recognition of conserved bacterial components provides immediate and efficient immune responses and plays a critical role in triggering antigen-specific adaptive immunity. To date, most microbial components that are detected by host innate immune system are non-proteinaceous structural components. In order to identify novel bacterial immunostimulatory proteins, we developed a new high-throughput approach called “EPSIA”, Expressed Protein Screen for Immune Activators. Out of 3,882 Vibrio cholerae proteins, we identified phosphatidylserine decarboxylase (PSD) as a conserved bacterial protein capable of activating host innate immunity. PSD in concentrations as low as 100 ng/ml stimulated RAW264.7 murine macrophage cells and primary peritoneal macrophage cells to secrete TNFα and IL-6, respectively. PSD-induced proinflammatory response was dependent on the presence of MyD88, a known adaptor molecule for innate immune response. An enzymatically inactive PSD mutant and heat-inactivated PSD induced ∼40% and ∼15% of IL-6 production compared to that by native PSD, respectively. This suggests that PSD induces the production of IL-6, in part, via its enzymatic activity. Subsequent receptor screening determined TLR4 as a receptor mediating the PSD-induced proinflammatory response. Moreover, no detectable IL-6 was produced in TLR4-deficient mouse macrophages by PSD. PSD also exhibited a strong adjuvant activity against a co-administered antigen, BSA. Anti-BSA response was decreased in TLR4-deficient mice immunized with BSA in combination with PSD, further proving the role of TLR4 in PSD signaling in vivo. Taken together, these results provide evidence for the identification of V. cholerae PSD as a novel TLR4 agonist and further demonstrate the potential application of PSD as a vaccine adjuvant

    Optical coherence tomography—current technology and applications in clinical and biomedical research

    Get PDF

    The detector system of the Daya Bay reactor neutrino experiment

    Get PDF
    postprin

    Survivin: a unique target for tumor therapy

    Full text link
    corecore