27,110 research outputs found

    Cusp Summations and Cusp Relations of Simple Quad Lenses

    Full text link
    We review five often used quad lens models, each of which has analytical solutions and can produce four images at most. Each lens model has two parameters, including one that describes the intensity of non-dimensional mass density, and the other one that describes the deviation from the circular lens. In our recent work, we have found that the cusp and the fold summations are not equal to 0, when a point source infinitely approaches a cusp or a fold from inner side of the caustic. Based on the magnification invariant theory, which states that the sum of signed magnifications of the total images of a given source is a constant, we calculate the cusp summations for the five lens models. We find that the cusp summations are always larger than 0 for source on the major cusps, while can be larger or smaller than 0 for source on the minor cusps. We also find that if these lenses tend to the circular lens, the major and minor cusp summations will have infinite values, and with positive and negative signs respectively. The cusp summations do not change significantly if the sources are slightly deviated from the cusps. In addition, through the magnification invariants, we also derive the analytical signed cusp relations on the axes for three lens models. We find that both on the major and the minor axes the larger the lenses deviated from the circular lens, the larger the signed cusp relations. The major cusp relations are usually larger than the absolute minor cusp relations, but for some lens models with very large deviation from circular lens, the minor cusp relations can be larger than the major cusp relations.Comment: 8 pages, 4 figures, accepted for publication in MNRA

    Multipole Gravitational Lensing and High-order Perturbations on the Quadrupole Lens

    Full text link
    An arbitrary surface mass density of gravitational lens can be decomposed into multipole components. We simulate the ray-tracing for the multipolar mass distribution of generalized SIS (Singular Isothermal Sphere) model, based on the deflection angles which are analytically calculated. The magnification patterns in the source plane are then derived from inverse shooting technique. As have been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses such kind of overlapping caustics, the image numbers change by \pm 4, rather than \pm 2. There are two kinds of images for the caustics. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4 and 5 mode components, and found that one, two, and three butterfly or swallowtail singularities can be produced respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails contact, eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.Comment: 24 pages, 6 figure

    Recent advances in GaAs/Ge solar cells

    Get PDF
    By growing the GaAs cell on a Ge substrate, the advantages of GaAs cells can be retained and the higher mechanical strength of the Ge makes larger, thinner GaAs cells possible. To conform to immediate user requirements, GaAs growth conditions were modified to eliminate the additional PV output at GaAs/Ge interface. To demonstrate acceptable cell manufacturing technology, the major areas in cell manufacture were analyzed and developed, and efficiency combined. Also the cells were successfully assembled on current lightweight arrays. The main areas of effort are discussed
    corecore