2,255 research outputs found
Ipl1/aurora kinase suppresses S-CDK-driven spindle formation during prophase I to ensure chromosome integrity during meiosis
Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK) during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics
Normal-State Spin Dynamics and Temperature-Dependent Spin Resonance Energy in an Optimally Doped Iron Arsenide Superconductor
The proximity of superconductivity and antiferromagnetism in the phase
diagram of iron arsenides, the apparently weak electron-phonon coupling and the
"resonance peak" in the superconducting spin excitation spectrum have fostered
the hypothesis of magnetically mediated Cooper pairing. However, since most
theories of superconductivity are based on a pairing boson of sufficient
spectral weight in the normal state, detailed knowledge of the spin excitation
spectrum above the superconducting transition temperature Tc is required to
assess the viability of this hypothesis. Using inelastic neutron scattering we
have studied the spin excitations in optimally doped BaFe1.85Co0.15As2 (Tc = 25
K) over a wide range of temperatures and energies. We present the results in
absolute units and find that the normal state spectrum carries a weight
comparable to underdoped cuprates. In contrast to cuprates, however, the
spectrum agrees well with predictions of the theory of nearly antiferromagnetic
metals, without complications arising from a pseudogap or competing
incommensurate spin-modulated phases. We also show that the temperature
evolution of the resonance energy follows the superconducting energy gap, as
expected from conventional Fermi-liquid approaches. Our observations point to a
surprisingly simple theoretical description of the spin dynamics in the iron
arsenides and provide a solid foundation for models of magnetically mediated
superconductivity.Comment: 8 pages, 4 figures, and an animatio
Extra-gastrointestinal manifestations of inflammatory bowel disease may be less common than previously reported
Extra-intestinal manifestations are well recognized in inflammatory bowel disease (IBD). To what extent the commonly recognized extra-intestinal manifestations seen in IBD patients are attributable to IBD is, however, not clear due to the limited number of controlled studies published
The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast
During meiosis, homologous chromosomes pair at close proximity to form the synaptonemal complex (SC). This association is mediated by transverse filament proteins that hold the axes of homologous chromosomes together along their entire length. Transverse filament proteins are highly aggregative and can form an aberrant aggregate called the polycomplex that is unassociated with chromosomes. Here, we show that the Ecm11-Gmc2 complex is a novel SC component, functioning to facilitate assembly of the yeast transverse filament protein, Zip1. Ecm11 and Gmc2 initially localize to the synapsis initiation sites, then throughout the synapsed regions of paired homologous chromosomes. The absence of either Ecm11 or Gmc2 substantially compromises the chromosomal assembly of Zip1 as well as polycomplex formation, indicating that the complex is required for extensive Zip1 polymerization. We also show that Ecm11 is SUMOylated in a Gmc2-dependent manner. Remarkably, in the unSUMOylatable ecm11 mutant, assembly of chromosomal Zip1 remained compromised while polycomplex formation became frequent. We propose that the Ecm11-Gmc2 complex facilitates the assembly of Zip1 and that SUMOylation of Ecm11 is critical for ensuring chromosomal assembly of Zip1, thus suppressing polycomplex formation
Magnetism and its microscopic origin in iron-based high-temperature superconductors
High-temperature superconductivity in the iron-based materials emerges from,
or sometimes coexists with, their metallic or insulating parent compound
states. This is surprising since these undoped states display dramatically
different antiferromagnetic (AF) spin arrangements and Nel
temperatures. Although there is general consensus that magnetic interactions
are important for superconductivity, much is still unknown concerning the
microscopic origin of the magnetic states. In this review, progress in this
area is summarized, focusing on recent experimental and theoretical results and
discussing their microscopic implications. It is concluded that the parent
compounds are in a state that is more complex than implied by a simple Fermi
surface nesting scenario, and a dual description including both itinerant and
localized degrees of freedom is needed to properly describe these fascinating
materials.Comment: 14 pages, 4 figures, Review article, accepted for publication in
Nature Physic
Molecular Analysis of Precursor Lesions in Familial Pancreatic Cancer
PMCID: PMC3553106This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
A Novel Ultrasonic Method for Accurate Characterization of Microstructural Gradients in Monolithic and Composite Tubular Structures
Prior studies have shown that ultrasonic velocity/time-of-flight imaging that uses back surface echo reflections to gauge volumetric material quality is well suited (perhaps more so than is the commonlyused peak amplitude c-scanning) for quantitative characterization of microstructural gradients. Such gradients include those due to pore fraction, density, fiber fraction, and chemical composition variations [11β15]. Variations in these microstructural factors can affect the uniformity of physical performance (including mechanical [stiffness, strength], thermal [conductivity], and electrical [conductivity, superconducting transition temperature], etc. performance) of monolithic and composite [1,3,6,12]. A weakness of conventional ultrasonic velocity/time-of-flight imaging (as well as to a lesser extent ultrasonic peak amplitude c-scanning where back surface echoes are gated [17] is that the image shows the effects of thickness as well as microstructural variations unless the part is uniformly thick. This limits this type of imagingβs usefulness in practical applications. The effect of thickness is easily observed from the equation for pulse-echo waveform time-of-flight (2Ο) between the first front surface echo (FS) and the first back surface echo (B1), or between two successive back surface echoes where: 2Ο=(2d)V (1) where d is the sample thickness and V is the velocity of ultrasound in the material. Interpretation of the time-of-flight image is difficult as thickness variation effects can mask or overemphasize the true microstructural variation portrayed in the image of a part containing thickness variations. Thickness effects on time-of-flight can also be interpreted by rearranging equation (1) to calculate velocity: V=(2d)2Ο (2) such that velocity is inversely proportional to time-of-flight. Velocity and time-of-flight maps will be affected similarly (although inversely in terms of magnitude) by thickness variations, and velocity maps are used in this investigation to indicate time-of-flight variations.</p
Genic and Global Functions for Paf1C in Chromatin Modification and Gene Expression in Arabidopsis
In budding yeast, intragenic histone modification is linked with transcriptional elongation through the conserved regulator Paf1C. To investigate Paf1C-related function in higher eukaryotes, we analyzed the effects of loss of Paf1C on histone H3 density and patterns of H3 methylated at K4, K27, and K36 in Arabidopsis genes, and integrated this with existing gene expression data. Loss of Paf1C did not change global abundance of H3K4me3 or H3K36me2 within chromatin, but instead led to a 3β² shift in the distribution of H3K4me3 and a 5β² shift in the distribution of H3K36me2 within genes. We found that genes regulated by plant Paf1C showed strong enrichment for both H3K4me3 and H3K27me3 and also showed a high degree of tissue-specific expression. At the Paf1C- and PcG-regulated gene FLC, transcriptional silencing and loss of H3K4me3 and H3K36me2 were accompanied by expansion of H3K27me3 into the promoter and transcriptional start regions and further enrichment of H3K27me3 within the transcribed region. These results highlight both genic and global functions for plant Paf1C in histone modification and gene expression, and link transcriptional activity with cellular memory
- β¦