2,255 research outputs found

    Ipl1/aurora kinase suppresses S-CDK-driven spindle formation during prophase I to ensure chromosome integrity during meiosis

    Get PDF
    Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK) during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics

    Normal-State Spin Dynamics and Temperature-Dependent Spin Resonance Energy in an Optimally Doped Iron Arsenide Superconductor

    Full text link
    The proximity of superconductivity and antiferromagnetism in the phase diagram of iron arsenides, the apparently weak electron-phonon coupling and the "resonance peak" in the superconducting spin excitation spectrum have fostered the hypothesis of magnetically mediated Cooper pairing. However, since most theories of superconductivity are based on a pairing boson of sufficient spectral weight in the normal state, detailed knowledge of the spin excitation spectrum above the superconducting transition temperature Tc is required to assess the viability of this hypothesis. Using inelastic neutron scattering we have studied the spin excitations in optimally doped BaFe1.85Co0.15As2 (Tc = 25 K) over a wide range of temperatures and energies. We present the results in absolute units and find that the normal state spectrum carries a weight comparable to underdoped cuprates. In contrast to cuprates, however, the spectrum agrees well with predictions of the theory of nearly antiferromagnetic metals, without complications arising from a pseudogap or competing incommensurate spin-modulated phases. We also show that the temperature evolution of the resonance energy follows the superconducting energy gap, as expected from conventional Fermi-liquid approaches. Our observations point to a surprisingly simple theoretical description of the spin dynamics in the iron arsenides and provide a solid foundation for models of magnetically mediated superconductivity.Comment: 8 pages, 4 figures, and an animatio

    Extra-gastrointestinal manifestations of inflammatory bowel disease may be less common than previously reported

    Get PDF
    Extra-intestinal manifestations are well recognized in inflammatory bowel disease (IBD). To what extent the commonly recognized extra-intestinal manifestations seen in IBD patients are attributable to IBD is, however, not clear due to the limited number of controlled studies published

    The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast

    Get PDF
    During meiosis, homologous chromosomes pair at close proximity to form the synaptonemal complex (SC). This association is mediated by transverse filament proteins that hold the axes of homologous chromosomes together along their entire length. Transverse filament proteins are highly aggregative and can form an aberrant aggregate called the polycomplex that is unassociated with chromosomes. Here, we show that the Ecm11-Gmc2 complex is a novel SC component, functioning to facilitate assembly of the yeast transverse filament protein, Zip1. Ecm11 and Gmc2 initially localize to the synapsis initiation sites, then throughout the synapsed regions of paired homologous chromosomes. The absence of either Ecm11 or Gmc2 substantially compromises the chromosomal assembly of Zip1 as well as polycomplex formation, indicating that the complex is required for extensive Zip1 polymerization. We also show that Ecm11 is SUMOylated in a Gmc2-dependent manner. Remarkably, in the unSUMOylatable ecm11 mutant, assembly of chromosomal Zip1 remained compromised while polycomplex formation became frequent. We propose that the Ecm11-Gmc2 complex facilitates the assembly of Zip1 and that SUMOylation of Ecm11 is critical for ensuring chromosomal assembly of Zip1, thus suppressing polycomplex formation

    Magnetism and its microscopic origin in iron-based high-temperature superconductors

    Full text link
    High-temperature superconductivity in the iron-based materials emerges from, or sometimes coexists with, their metallic or insulating parent compound states. This is surprising since these undoped states display dramatically different antiferromagnetic (AF) spin arrangements and Neˊ\rm \acute{e}el temperatures. Although there is general consensus that magnetic interactions are important for superconductivity, much is still unknown concerning the microscopic origin of the magnetic states. In this review, progress in this area is summarized, focusing on recent experimental and theoretical results and discussing their microscopic implications. It is concluded that the parent compounds are in a state that is more complex than implied by a simple Fermi surface nesting scenario, and a dual description including both itinerant and localized degrees of freedom is needed to properly describe these fascinating materials.Comment: 14 pages, 4 figures, Review article, accepted for publication in Nature Physic

    A Novel Ultrasonic Method for Accurate Characterization of Microstructural Gradients in Monolithic and Composite Tubular Structures

    Get PDF
    Prior studies have shown that ultrasonic velocity/time-of-flight imaging that uses back surface echo reflections to gauge volumetric material quality is well suited (perhaps more so than is the commonlyused peak amplitude c-scanning) for quantitative characterization of microstructural gradients. Such gradients include those due to pore fraction, density, fiber fraction, and chemical composition variations [11–15]. Variations in these microstructural factors can affect the uniformity of physical performance (including mechanical [stiffness, strength], thermal [conductivity], and electrical [conductivity, superconducting transition temperature], etc. performance) of monolithic and composite [1,3,6,12]. A weakness of conventional ultrasonic velocity/time-of-flight imaging (as well as to a lesser extent ultrasonic peak amplitude c-scanning where back surface echoes are gated [17] is that the image shows the effects of thickness as well as microstructural variations unless the part is uniformly thick. This limits this type of imaging’s usefulness in practical applications. The effect of thickness is easily observed from the equation for pulse-echo waveform time-of-flight (2Ο„) between the first front surface echo (FS) and the first back surface echo (B1), or between two successive back surface echoes where: 2Ο„=(2d)V (1) where d is the sample thickness and V is the velocity of ultrasound in the material. Interpretation of the time-of-flight image is difficult as thickness variation effects can mask or overemphasize the true microstructural variation portrayed in the image of a part containing thickness variations. Thickness effects on time-of-flight can also be interpreted by rearranging equation (1) to calculate velocity: V=(2d)2Ο„ (2) such that velocity is inversely proportional to time-of-flight. Velocity and time-of-flight maps will be affected similarly (although inversely in terms of magnitude) by thickness variations, and velocity maps are used in this investigation to indicate time-of-flight variations.</p

    Genic and Global Functions for Paf1C in Chromatin Modification and Gene Expression in Arabidopsis

    Get PDF
    In budding yeast, intragenic histone modification is linked with transcriptional elongation through the conserved regulator Paf1C. To investigate Paf1C-related function in higher eukaryotes, we analyzed the effects of loss of Paf1C on histone H3 density and patterns of H3 methylated at K4, K27, and K36 in Arabidopsis genes, and integrated this with existing gene expression data. Loss of Paf1C did not change global abundance of H3K4me3 or H3K36me2 within chromatin, but instead led to a 3β€² shift in the distribution of H3K4me3 and a 5β€² shift in the distribution of H3K36me2 within genes. We found that genes regulated by plant Paf1C showed strong enrichment for both H3K4me3 and H3K27me3 and also showed a high degree of tissue-specific expression. At the Paf1C- and PcG-regulated gene FLC, transcriptional silencing and loss of H3K4me3 and H3K36me2 were accompanied by expansion of H3K27me3 into the promoter and transcriptional start regions and further enrichment of H3K27me3 within the transcribed region. These results highlight both genic and global functions for plant Paf1C in histone modification and gene expression, and link transcriptional activity with cellular memory
    • …
    corecore