30,309 research outputs found

    Dynamic stability and parametric resonance in cylindrical propellant tanks Final report

    Get PDF
    Dynamic stability and parametric resonance of longitudinally excited liquid propellant tank mode

    Exhaust cloud rise and diffusion in the atmosphere

    Get PDF
    Analytical approach develops physical-mathematical model of rocket engine exhaust cloud rise, growth, and diffusion. Analytic derivations and resultant model apply to hot exhaust cloud study or industrial stack plumes, making work results applicable to air pollution. Model formulations apply to all exhaust cloud types and various atmospheric conditions

    Perception of Lower Extremity Loads in Stroke Survivors

    Get PDF
    Objective: This study aimed to improve our understanding of static and dynamic lower extremity sensory perception and the impact of sensory impairments on the control of walking in stroke survivors. Methods: Using a custom, real-time unloading system, we tested load perception at heel strike, mid stance and push off in 10 stroke survivors and compared their performance to 10 age-matched and 5 young adult control subjects. Dynamic load perception was based on a judgment of which leg was bearing more load, which was altered on a step by step basis. We also examined lower extremity static load perception, coordination, proprioception, balance, and gait symmetry. Results: The stroke survivors performed significantly worse than the control subjects in dynamic load perception, coordination, proprioception, balance and gait symmetry. Gait symmetry correlated with static and dynamic load perception measures but not with age, proprioception, coordination, and balance. Conclusions: Sensory deficits related to load detection in the impaired limb could result in an increased uncertainty of limb load and a gait strategy in which stroke survivors minimize loading of the impaired limb. Significance: This new method of measuring lower extremity dynamic load perception provides a framework for understanding gait-related sensory impairments in stroke survivors

    Rise and growth of space vehicle engine exhaust and associated diffusion models

    Get PDF
    Space vehicle plume rise and associated diffusion models at Cape Kennedy Launch Comple

    Inflight estimation of gyro noise

    Get PDF
    A method is described and demonstrated for estimating single-axis gyro noise levels in terms of the Farrenkopf model parameters. This is accomplished for the Cosmic Background Explorer (COBE) by comparing gyro-propagated attitudes with less accurate single-frame solutions and fitting the squared differences to a third-order polynomial in time. Initial results are consistent with the gyro specifications, and these results are used to determine limits on the duration of batches used to determine attitude. Sources of error are discussed, and guidelines for a more elegant implementation, as part of a batch estimator or filter, are included for future work

    Photoemission Spectroscopy of Magnetic and Non-magnetic Impurities on the Surface of the Bi2_2Se3_3 Topological Insulator

    Full text link
    Dirac-like surface states on surfaces of topological insulators have a chiral spin structure that suppresses back-scattering and protects the coherence of these states in the presence of non-magnetic scatterers. In contrast, magnetic scatterers should open the back- scattering channel via the spin-flip processes and degrade the state's coherence. We present angle-resolved photoemission spectroscopy studies of the electronic structure and the scattering rates upon adsorption of various magnetic and non-magnetic impurities on the surface of Bi2_2Se3_3, a model topological insulator. We reveal a remarkable insensitivity of the topological surface state to both non-magnetic and magnetic impurities in the low impurity concentration regime. Scattering channels open up with the emergence of hexagonal warping in the high-doping regime, irrespective of the impurity's magnetic moment.Comment: 5 pages, 4 figure

    Effective non-Markovian description of a system interacting with a bath

    Get PDF
    We study a harmonic system coupled to chain of first neighbor interacting oscillators. After deriving the exact dynamics of the system, we prove that one can effectively describe the exact dynamics by considering a suitable shorter chain. We provide the explicit expression for such an effective dynamics and we provide an upper bound on the error one makes considering it instead of the dynamics of the full chain. We eventually prove how error, timescale and number of modes in the truncated chain are related

    Holography and Cosmological Singularities

    Full text link
    Certain null singularities in ten dimensional supergravity have natural holographic duals in terms of Matrix Theory and generalizations of the AdS/CFT correspondence. In many situations the holographic duals appear to be well defined in regions where the supergravity develops singularities. We describe some recent progress in this area.Comment: Anomaly equation corrected. References adde

    Expansion Aspect of Color Transparency on the Lattice

    Full text link
    The opportunity to observe color transparency (CT) is determined by how rapidly a small-sized hadronic wave packet expands. Here we use SU(2) lattice gauge theory with Wilson fermions in the quenched approximation to investigate the expansion. The wave packet is modeled by a point hadronic source, often used as an interpolating field in lattice calculations. The procedure is to determine the Euclidean time (t), pion channel, Bethe-Salpeter amplitude Ψ(r,t)\Psi(r,t), and then evaluate b2(t)=d3rΨ(r,t)r2sin2θΨπ(r)b^2(t)=\int d^3 r \Psi(r,t) r^2 sin^2 \theta \Psi_{\pi}(r). This quantity represents the soft interaction of a small-sized wave packet with a pion. The time dependence of b2(t)b^2(t) is fit as a superposition of three states, which is found sufficient to reproduce a reduced size wave packet. Using this superposition allows us to make the analytic continuation required to study the wave packet expansion in real time. We find that the matrix elements of the soft interaction b^2\hat b^2 between the excited and ground state decrease rapidly with the energy of the excited state.Comment: 19 pages, latex, 4 figure
    corecore