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We study a harmonic system coupled to a chain of first neighbor interacting oscilla-
tors. After deriving the exact dynamics of the system, we prove that one can effec-
tively describe the exact dynamics by considering a suitable shorter chain. We provide
the explicit expression for such an effective dynamics and we provide an upper bound
on the error one makes considering it instead of the dynamics of the full chain. We
eventually prove how error, time scale and number of modes in the truncated chain
are related. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4953686]

I. INTRODUCTION

Every quantum system unavoidably interacts with the surrounding environment. The dynamics
describing such open quantum systems are in general very difficult to treat as they involve the
whole history of the process. In order to analyze the physical features of these systems one needs
to consider effective descriptions, which have a simpler structure and are then more suitable for a
detailed analysis. If the time scale of the system is much smaller than the one of the environment,
one can use the Markovian approximation. Markovian dynamics are the most widely used, and their
mathematical and physical features very well known.1 However, many physical systems in chem-
istry and biology do not display such a clear separation of time scales and they cannot be described
by Markovian dynamics.2–4 In order to study such non-Markovian systems, one then needs to look
for different kinds of effective descriptions, not based on a time scale selection. The main problem
one has to face when dealing with open systems is that the environment has a very large number of
degrees of freedom which are hard to control. A possible solution to this problem is to consider an
effective description which involves a small number of degrees of freedom. In this paper we prove
that one can effectively describe the influence of a big environment, with an effective environment
made of a (much) smaller number of constituents.

The independent oscillators (IOs) model is one of the most widely used to describe open
quantum systems.5–7 In this model, the environment is described by a set of independent harmonic
oscillators which are linearly coupled to the relevant system. The IO model has been widely studied,
and it allowed for the description of Markovian and non-Markovian quantum Brownian motion.7–9

Furthermore, one can derive a Generalized Langevin Equation (GLE), which is suitable for a
phenomenological description of thermal and diffusive properties.10–14 However, though the GLE
shows the existence of non-Markovian effects, it does not allow for an effective description of these.
In a recent paper,15 it has been shown that a chain model for the environment suits better for this
goal. In this model, which is widely used also in other fields,16,17 the environment is described
by a chain of first neighbor interacting oscillators. The ordering in the interaction (absent in the
IO model) gives a clearer physical picture of how the non-Markovian effects build up and allows for
an effective description of the dynamics.

a)Electronic mail: ferialdi@math.lmu.de
b)Electronic mail: duerr@math.lmu.de

0022-2488/2016/57(6)/062101/10/$30.00 57, 062101-1 Published by AIP Publishing.

http://dx.doi.org/10.1063/1.4953686
http://dx.doi.org/10.1063/1.4953686
http://dx.doi.org/10.1063/1.4953686
http://dx.doi.org/10.1063/1.4953686
http://dx.doi.org/10.1063/1.4953686
http://dx.doi.org/10.1063/1.4953686
http://dx.doi.org/10.1063/1.4953686
http://dx.doi.org/10.1063/1.4953686
http://dx.doi.org/10.1063/1.4953686
http://dx.doi.org/10.1063/1.4953686
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:ferialdi@math.lmu.de
mailto:duerr@math.lmu.de
mailto:duerr@math.lmu.de
mailto:duerr@math.lmu.de
mailto:duerr@math.lmu.de
mailto:duerr@math.lmu.de
mailto:duerr@math.lmu.de
mailto:duerr@math.lmu.de
mailto:duerr@math.lmu.de
mailto:duerr@math.lmu.de
mailto:duerr@math.lmu.de
mailto:duerr@math.lmu.de
mailto:duerr@math.lmu.de
mailto:duerr@math.lmu.de
mailto:duerr@math.lmu.de
mailto:duerr@math.lmu.de
mailto:duerr@math.lmu.de
mailto:duerr@math.lmu.de
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4953686&domain=pdf&date_stamp=2016-06-08


062101-2 L. Ferialdi and D. Dürr J. Math. Phys. 57, 062101 (2016)

A first attempt of effectively describing the short time dynamics of a system has been made
in Ref. 18. Defining some “collective modes,”the authors obtain an effective Hamiltonian and they
show that the cumulant expansion of this is equivalent to that of the original Hamiltonian up to
the third term. Though they can argue the equivalence of the two dynamics for “short times,”this
result is not rigorously proven, and it does not give the error made by considering the effective
dynamics.

A step forward in the derivation of an effective dynamics has been taken in Ref. 15, where
the authors solved the Heisenberg equations of motion for the chain models obtaining a description
equivalent to the GLE. Unlike the GLE, which cannot be analytically solved for any environment,
the dynamics obtained in Ref. 15 is completely general and its structure paves the way for an
effective description. The aim of this paper is to complete this program: we prove that, for a
harmonic system, one can derive an effective dynamics for any set of chain parameters, giving
an explicit bound on the error one makes considering the effective dynamics instead of the full
one.

The paper is organized as follows: in Section II we summarize the main result of Ref. 15, giving
a mathematical account of it; in Section III we prove that one can give an effective description of the
full dynamics, we prove that the error one makes is bounded. We eventually provide the relationship
among time scale, number of modes, and error.

II. NON-MARKOVIAN DYNAMICS OF AN HARMONIC OSCILLATOR

Our starting model is a system interacting linearly with an environment of N independent
oscillators (IOs). Such a model is described by the following Hamiltonian:

HIO =
p2

2M
+ V (x) + x

N
k=1

ckqk +
N
k=1

1
2
�
p2
k + ω

2
kq2

k

�
, (1)

where at this stage V (x) is a generic potential, while later we will focus on harmonic systems, i.e.,
purely quadratic potentials, which one may see, if one wishes to do so, as Taylor expansion of
the generic potential. Since we are considering only short times such a Taylor expansion might be
justifiable, but we do not do that in this paper. x,p are the position and momentum operators of the
relevant system, and qk,pk are position and momentum operators of the environmental oscillators.
Such oscillators have proper frequency ωk and they are coupled to the system via the positive
constants ck.

The Heisenberg equations of motion for the environmental oscillators are easily written as
follows:

d2

dt2 q(t) = −ω · q(t), (2)

where qT = (q1, . . . qN) is the vector of the environmental position operators, and ω is the diagonal
matrix of the oscillators frequencies: ω = diag(ω2

1, . . . ,ω
2
N), with ω1 < ω2 < · · ·ωN .

As we have already mentioned, a chain model for the bath is more suitable to study the short
time behavior of the dynamics. Such a model is described by the following Hamiltonian:

HCHAIN =
p2

2M
+ V (x) + DxX1 +

N
k=2

Dk−1Xk−1Xk +

N
k=1

1
2
�
P2
k +Ω

2
kX2

k

�
. (3)

The chain oscillators have position Xk, momentum Pk, proper frequency Ωk, and display a first-
neighbor interaction with positive coupling Dk. The Heisenberg equations for Xk read

d2

dt2 X(t) = −T · X(t), (4)
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where XT = (X1, . . . XN), and T is the following tridiagonal matrix:

T =

*......
,

Ω
2
1 −D1 0 . . .

−D1 Ω
2
2 −D2 . . .

0 −D2 Ω
2
3 . . .

...
...

...
. . .

+//////
-

. (5)

In order for the chain description to be equivalent to the initial IO model, one needs to require
that the dynamics given by (1) and (3) are equivalent. Accordingly, the parameters entering (3) are
not free, but particular combinations of the parameters of (1), and the chain oscillators X must be
specific linear combination of the independent q. We define

X j =

k

O jkqk , (6)

where O is an orthogonal N × N matrix. The condition of equivalent dynamics is fulfilled only
when the systems of equations of motions (2) and (4) are equivalent. Substituting (6), one finds that
this is true when

T = O · ωOT . (7)

The problem of determining a matrix starting from its eigenvalues is known with the name of In-
verse Eigenvalue Problem (IEP).19,20 For our case of study, such problem can be exactly solved, i.e.,
one can analytically determine the entries of O, and through them the matrix T and the parameters
of the chain Ωk,Dk. For the details of the solution of the IEP and the derivation of the parameters
one can refer to Ref. 15, here we summarize the result. The entries of the matrix O read

O jk =
*.
,

j−1
l=1

D−1
j−1

+/
-

Pj−1(ωk) , (8)

where Pj(λ) is the characteristic polynomial of the j-th leading principal minor of T, evaluated in λ.
The explicit expressions for the Pj are determined recursively exploiting the following recurrence
relation:

Pj+1(λ) = (Ω2
j − λ)Pj(λ) − D2

jPj−1(λ), (9)

with P−1 = 0. Once the transformation matrix O is determined, the entries of T are given by the
following relations:

Ω
2
j =


k

ω2
kO2

jk, (10)

D j = −

k

ω2
kO jkO j+1k . (11)

From now on we will consider the matrix T as known, i.e., as fully determined in terms of the
parameters of the IO model, and we will assume the dynamics given by Eq. (3) to be equivalent to
that given by Eq. (1).

A. Non-Markovian dynamics of an harmonic oscillator

After having established the equivalence between the two models, we determine how the chain
modes affect the dynamics of the relevant system. At this purpose, we need to solve the set of
equations of motion (4). Since the equations of motion are equivalent for a quantum or classical
systems, we treat the latter case in order to keep the treatment easier. We consider the relevant
system to be an harmonic oscillator with proper frequencyΩ, in such a way that (4) can be explicitly
rewritten as follows:
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d2

dt2 x(t) = −Ω2x(t) + DX1(t), (12)

d2

dt2 Xi(t) = −Ω2
i Xi(t) + Di−1X j−1(t) + DiXi+1(t) , 1 ≤ i ≤ N − 1, (13)

d2

dt2 XN(t) = −Ω2
NXN(t) + DN−1XN−1(t) . (14)

We independently solve the equations of the previous system and rewrite them as follows:

x(t) = f0 +

 t

0

sin[Ω0(t − s)]
Ω0

DX1(s)ds, (15)

Xi(t) = f i(t) +
 t

0

sin[Ωi(t − s)]
Ωi

(Di−1Xi−1(s) + DiXi+1(s))ds, 1 ≤ i ≤ N − 1, (16)

XN(t) = fN +
 t

0

sin[ΩN(t − s)]
ΩN

DN−1XN−1(s)ds , (17)

where we have relabeledΩ0 = Ω, X0 = x, and

f i(t) = Xi(0) cos[Ωit] + Ẋi(0) sin[Ωit]
Ωi

. (18)

In order to obtain an equation for x in terms of the Xi, we substitute recursively in x(t) the
equations for X1(t),X2(t), . . . ,Xn(t), and we prove the following theorem.

Theorem 1: Let {x(t),Xi(t)}i=1, ...,N ∈ R be the set of functions solving the system (15)-(17). Let
the functions Ki(t − s) : R2 → R and f̃ i(t) : R2 → R be defined recursively as follows ∀1 ≤ i ≤ N :

Ki(t − s) =
 t

s

Ki−1(t − l) sin[Ωi(l − s)]dl, (19)

f̃ i(t) = f̃ i−1(t) + *
,

i−1
l=0

Dl

Ωl

+
-

 t

0
Ki−1(t − s) f i(s)ds, (20)

with K0(t − l) = sin[Ω(t − l)], f̃0(t) = f0(t), and f i(s) given by Eq. (18). Hence, ∀n ≤ N , Eq. (15)
for x(t) can be rewritten as follows:

x(t) = f̃n(t) +
n
i=1

*
,

i
l=0

Dl

Ωl

+
-

Di−1

Di

 t

0
Ki(t − s)Xi−1(s)ds

+ *
,

n
l=0

Dl

Ωl

+
-

 t

0
Kn(t − s)Xn+1(s)ds . (21)

Proof: The proof is by induction. First of all we show that for n = 1, Eq. (21) is correct.
Substituting Eq. (16) for X1(t) in Eq. (15) one finds

x(t) = f0(t) + D
Ω

 t

0
sin[Ω(t − s)] f1(s)ds

+
D2

ΩΩ1

 t

0
K1(t − s)x(s)ds +

DD1

ΩΩ1

 t

0
K1(t − s)X2(s)ds . (22)

This equation can be easily recast in a form like Eq. (21). Assume now that Eq. (21) is true for a
generic n ≤ N , and substitute Eq. (16) for Xn+1(s) in the second line of Eq. (21). After some simple
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manipulation one can show that the Eq. (21) reads now as follows:

x(t) = f̃n+1(t) +
n+1
i=1

*
,

i
l=0

Dl

Ωl

+
-

Di−1

Di

 t

0
Ki(t − s)Xi−1(s)ds

+ *
,

n+1
l=0

Dl

Ωl

+
-

 t

0
Kn+1(t − s)Xn+2(s)ds (23)

that is exactly Eq. (21) for n → n + 1. This completes the proof. �

It is important to note that Equation (21) is exact. Although only the equations for the first n Xi

have been substituted into x(t), the term depending on Xn+1 of Eq. (21) encodes the information
regarding the evolution of the remaining N − n modes. It is easy to prove that, if one substitutes the
equations for all the N Xi, the following Corollary holds true.

Corollary: Let the hypothesis of Theorem 1 be true, and let n = N . Hence,

x(t) = f̃N(t) +
N
i=1

*
,

i
l=0

Dl

Ωl

+
-

Di−1

Di

 t

0
Ki(t − s)Xi−1(s)ds. (24)

Proof: By definition, DN = 0. Accordingly, the second line of Eq. (21) is null. �

This equation determines how the dynamics of x(t) is affected by the full set of Xi: f̃N(t)
accounts for the initial conditions of the collective modes, while the second term is a purely
non-Markovian contribution which involves the whole past evolution of the collective modes. It
is important to underline that each Xi contributes to x(t) via Ki+1. This is a crucial feature of the
dynamics that will play a fundamental role in the following calculations.

In Eqs. (21) and (24) the dependence on x(t) is not completely explicit. Recalling that X0 = x
we rewrite such equations as follows:

x(t) = D2

ΩΩ1

 t

0
K1(t − s)x(s)ds + FN(t), (25)

where the function FN(t) collecting all terms that do not depend on x is defined as follows:

FN(t) = f̃n(t) +
N
i=2

*
,

i
l=0

Dl

Ωl

+
-

Di−1

Di

 t

0
Ki(t − s)Xi−1(s)ds

+ *
,

n
l=0

Dl

Ωl

+
-

 t

0
Kn(t − s)Xn+1(s)ds (26)

= f̃N(t) +
N
i=2

*
,

i
l=0

Dl

Ωl

+
-

Di−1

Di

 t

0
Ki(t − s)Xi−1(s)ds , (27)

where the definitions come from Eqs. (21) and (24) respectively. Note that if one chooses n = N
in the first equation, one recovers the second one as expected. Eq. (25) explicitly shows that the
dynamics of x is ruled by an integral equation. Since the kernel K1(t − s) is a linear combination of
two sine functions, Eq. (25) can be solved using standard techniques.21 The solution reads

x(t) = FN(t) + D2

µ1µ2(µ2
2 − µ2

1)
 t

0
(µ2 sin[µ1(t − s)] − µ1 sin[µ2(t − s)]) FN(s)ds, (28)

where

µ1,2 =


1
2

(
Ω2 +Ω2

1 ±
√
∆
)
, ∆ = (Ω2 −Ω2

1)2 − 4D2. (29)
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In order to avoid multi-valued x(t), µ1,2 have to be real, i.e., the condition ∆ ≥ 0 has to hold
true. Equation (28) is the exact solution of our problem, as it displays the dynamics of an harmonic
oscillator under the influence of a chain of N harmonic oscillators. One can identify two different
types of contributions: a diffusive one, given by those terms contained in FN(t) that depend on
the initial conditions qk(0); and a purely non-Markovian one, given by the integral terms, and
which depends on the interaction among the chain modes. This equation gives a description of
non-Markovian dynamics which is equivalent to the generalized Langevin equation.15 Furthermore,
Eq. (28) plays an important role because it has the added value of allowing for an effective descrip-
tion of non-Markovian dynamics, i.e., a description in terms of a smaller number of degrees of
freedom.

III. EFFECTIVE NON-MARKOVIAN DYNAMICS

In the study of open quantum system the number N of constituents of the environment is
typically assumed to be very large. Controlling the dynamics of so many constituents is not
possible. One then has to consider approximated dynamics, or in many practical applications one
needs to exploit numerical methods. Aim of this section is to understand whether it is possible
to describe with a good approximation the full dynamics of an open system, by a particle in-
teracting with a smaller bath (in our case, a shorter chain). In fact, we will prove that there
always exist a time scale such that the true dynamics x(t) of the system is well approximated
by truncating the original chain after n ≤ N oscillators. Let x(n)(t) denote the exact evolution of
x interacting with a chain of n oscillators. Observe that truncating the chain after the nth oscil-
lator corresponds to setting Dn = 0. Accordingly, the evolution of x(n)(t) is given by Eq. (28)
with N replaced by n. It proves useful for the forthcoming discussion to define the following
function:

ϵ1(n, t) B FN(t) − Fn(t). (30)

Comparing Eq. (26) for FN(t), and Eq. (27) for Fn(t), one can easily show that

ϵ1(n, t) = *
,

n
l=0

Dl

Ωl

+
-

 t

0
Kn(t − s)Xn+1(s)ds. (31)

We define a further function that measures the error made by considering the truncated dy-
namics instead of the full one

ϵ(n, t) B �
x(t) − x(n)(t)� . (32)

Exploiting Eq. (28) one finds that

ϵ(n, t) = |ϵ1(n, t) + ϵ2(n, t)| , (33)

where

ϵ2(n, t) = D2

µ1µ2(µ2
2 − µ2

1)
 t

0
(µ2 sin[µ1(t − s)] − µ1 sin[µ2(t − s)]) ϵ1(n, s)ds. (34)

Our aim is to obtain an upper bound on the error function ϵ(n, t). Since ϵ(n, t) strongly depends
on the features of the kernels Kn(t − s), in order to reach our goal we need to understand their
features.

A. Kernels structure

From the definition of Eq. (19), one easily understand that each Ki consists of i nested integrals
of sine functions. This structure, that is due to the harmonic feature of the chain, turns out to
be crucial for the analysis of the system. Indeed, the k-th derivatives of Ki have the following
remarkable properties.
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Theorem 2: Let Ki(t − s) : R2 → R be the kernels defined in Eq. (19), and let K (k)
i (t − s) be

their k-th derivatives with respect to t. Hence, the following equations hold true:

K (k)
i (t − s) =

 t

s

K (k)
i−1(t − l) sin[Ωi(l − s)]dl ∀k ≤ 2i − 1 (35)

K (2k)
i (t − s) = sin[Ωi(t − s)]

k
j=1

(−1) j+kK (2 j−1)
i−1 (0)Ω2k−2 j

i

+

 t

s

K (2i+1)
i−1 (t − l) sin[Ωi(l − s)]dl ∀k ≥ i (36)

K (2k−1)
i (t − s) = cos[Ωi(t − s)]

k−1
j=1

(−1) j+k−1K (2 j−1)
i−1 (0)Ω2k−1−2 j

i

+

 t

s

K (2i+1)
i−1 (t − l) sin[Ωi(l − s)]dl ∀k ≥ i + 1. (37)

Proof: The proof is by induction. We recall the definition of K1(t − s):

K1(t − s) =
 t

s

K0(t − l) sin[Ω1(l − s)]dl =
 t

s

sin[Ω(t − l)] sin[Ω1(l − s)]dl . (38)

Differentiating this equation it is easy to check that K (1)
1 , K (2)

1 and K (3)
1 satisfy the system above. The

proof for higher derivatives can easily be done differentiating recursively. Assume now that the sys-
tem (35)-(37) holds true, and note that this implies that K (k)

i (0) = 0 for all k ≤ 2i − 1. Accordingly,
if one iteratively differentiates the definition (19) for Ki+1, one finds

K (k)
i+1(t − s) =

 t

s

K (k)
i (t − l) sin[Ωi(l − s)]dl ∀k ≤ 2i + 1 (39)

that is Eq. (35) for Ki+1. Differentiating this equation one can easily prove that Eqs. (36) and (37)
hold true for Ki+1 as well. �

This Theorem shows some interesting features of the kernels derivatives which will prove
essential. First of all, K (k)

i (0) = 0 not only for all k ≤ 2i − 1, but also for all even k. Moreover,
iterating Eq. (37) one can show that

K (2k−1)
i (0) = *

,

i
l=0

Ωl
+
-

k−1−i
α j = 0

α j = k − 1 − i

*
,

j
l=0

Ω
2αl
l

+
-
. (40)

We exploit Theorem 2 to understand the time behavior of the kernels, by expanding Ki in
Taylor series. First of all note that, since the first 2i and all the even derivatives of Ki are null, the
kernels Taylor series start with the index i − 1, and they display only odd terms.

Ki(t − s) =
∞
k=0

K (k)
i (0)
k!

(t − s)k =
∞

k=i+1

K (2k−1)
i (0)

(2k − 1)! (t − s)2k−1 . (41)

This equation gives an interesting insight into the evolution of x(t) and on how the non-Markovian
behavior emerges. We recall Eq. (24) which shows that each Xi influences x(t) via Ki+1. Accord-
ingly, if we consider t < 1, the smaller i the earlier Xi contributes to the dynamics of x. At the
beginning, only X1 gives a relevant contribution to the non-Markovian term of the dynamics of x(t),
i.e., the integral term of Eq. (24), and as time grows, also other modes enter into the game. In other
words, for short time scales only the first oscillators of the chain contribute to the non-Markovian
dynamics.
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B. Short-time approximation

From the discussion above one can also infer another fundamental property of the system: if the
time scale is short enough, further oscillators can be neglected since their contribution is very small.
Accordingly, one can effectively describe the dynamics of the full system by a truncated chain.
The time scale, the number of oscillators in the truncated chain, and the error one makes using the
effective dynamics are strictly connected quantities. The next theorem proves how these quantities
are related.

Theorem 3: The error function ϵ(n, t) defined in Eqs. (30)-(34) is bounded from above as
follows:

ϵ(n, t) ≤
N
k=1

|Pn(ωk)|
(
|qk(0)| + |q̇k(0)|

ωk

)
t2n+2 ·



cosh
(
t
n

i=0Ω
2
i

)
(2n + 2)! +

D2t4 cosh
(
t

Ω2 +Ω2

1 +
n

i=0Ω
2
i

)
(2n + 6)!



. (42)

Proof: We apply the triangular inequality to Eq. (33), and we evaluate independently the two
contributions of |ϵ1(n, t)| and |ϵ2(n, t)|. The first one reads

|ϵ1(n, t)| ≤ *
,

n
l=0

Dl

Ωl

+
-

 t

0
|Kn(t − s)| · |Xn+1(s)| ds

≤ *
,

n
l=0

Ω
−1
l
+
-

N
k=1

|Pn(ωk)|
(
|qk(0)| + |q̇k(0)|

ωk

)  t

0
|Kn(t − s)| ds, (43)

where the second line is obtained by expressing Xn+1 in terms of the qk by means of Eqs. (6)
and (8). Since the qk are independent, they evolve with linear combinations of sines and cosines
which have been bounded by 1. One can then exploit Eq. (41) and obtain t

0
|Kn(t − s)| ds ≤

∞
j=n+1

K (2 j−1)
n (0)

2 j!
t2 j

≤ *
,

i
l=0

Ωl
+
-

∞
j=n+1

t2 j

2 j!
*
,

n
i=1

Ω
2
i
+
-

j−n−1

≤ *
,

i
l=0

Ωl
+
-

t2n+2

(2n + 2)! cosh *.
,
t


n
i=1

Ω2
i
+/
-
. (44)

The second inequality is obtained by substituting Eq. (40) for K (2 j−1)
n (0) and by observing that this

equation is essentially (i
j=0Ω

2
j)n−1−i with all the coefficients set to 1. The third line comes from

a change of variable on the sum index and extending the series to zero. Substituting this result in
Eq. (42) one finds

|ϵ1(n, t)| ≤
N
k=1

|Pn(ωk)|
(
|qk(0)| + |q̇k(0)|

ωk

)
t2n+2

(2n + 2)! cosh *.
,
t


n
i=1

Ω2
i
+/
-
. (45)

The contribution of |ϵ2(n, t)| to Eq. (42) is obtained as follows. First of all one observes that the
integral kernel of ϵ2(n, t) in (34) is of the same order as K1,

µ2 sin[µ1(t − s)] − µ1 sin[µ2(t − s)]
µ2

2 − µ2
1

B K̃1(t − s) . (46)

Substituting the definition of ϵ1(n, t) in Eq. (34), one finds that Xn+1 contributes via a kernel K̃n+2 of
the order n + 2. The final result is obtained following the same procedure as for |ϵ1(n, t)|. �
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As expected Eq. (42) displays a dependence on the initial conditions of the bath position
operators. Since these quantities are in principle not known, to overcome this issue one traces over
the bath degrees of freedom. We assume that the bath initial state is in thermal equilibrium at
temperature T

ρ =
1
Z

e−βH , (47)

where Z guarantees that Trρ = 1, and β = (kBT)−1 with kB the Boltzmann constant. We prove the
following theorem.

Theorem 4: If the initial state of the bath is given by Eq. (47), the error is in average bounded
from above as follows:

⟨ϵ(n, t)⟩ ≤


8kBT
π

*
,

N
k=1

|Pn(ωk)|
ωk

+
-

t2n+2 ·



cosh
(
t
n

i=0Ω
2
i

)
(2n + 2)! +

D2t4 cosh
(
t

Ω2 +Ω2

1 +
n

i=0Ω
2
i

)
(2n + 6)!



. (48)

Proof: We consider the term in Eq. (42) that depends on the initial operators, and we average it
over the initial state (47):

N
k=1

|Pn(ωk)|
Z

 ∞

−∞

N
l=1

dqldq̇l

(
|qk(0)| + |q̇k(0)|

ωk

)
exp *.

,
− β

2

N
j=1

q̇2
j + ω

2
jq

2
j
+/
-
. (49)

One can easily perform the two N-dimensional Gaussian integrals and obtain
8kBT
π

N
k=1

|Pn(ωk)|
ωk

. (50)

Replacing this expression in Eq. (42) one finally obtains Eq. (48). �

Theorem 4 shows how ϵ , t and n relate to each other at a given temperature. This is a funda-
mental result as it explains in which sense and under which limits the truncated dynamics can be
considered an effective dynamics for the full system. Moreover, the result is versatile and can be
easily adapted to different uses, since one can fix two of the mentioned quantities in order to obtain
the third one. For example, one might be interested to know how big is the error after a time t,
truncating the chain to n oscillators. On the other side, one might choose to fix a value for the error
at a given time, and derive how many oscillators are needed in order to satisfy such condition. It is
not easy to invert analytically Eq. (48), but it is rather easy to evaluate it numerically.

IV. CONCLUSIONS

In order to derive an effective description of non-Markovian open systems dynamics, we
considered a chain representation of the environment. After deriving analytically the exact dy-
namics of the problem, we proved the existence of an effective description for such a dynamics
and we provided its explicit form. The proof is based on a peculiar feature of the integral kernels
of the dynamics, deeply related to the harmonic feature of the model. In particular, this intrinsic
structure shows that “far” oscillators can be neglected if the time scale of the dynamics is short
enough. Furthermore, we gave an upper bound of the error one makes when considering such an
approximated dynamics instead of the exact one. Such bound depends on the number of oscillators
in the truncated chain, on the time scale and on the temperature of the system, setting a strong
relationship among these quantities. This achievement gives a strong basis for future investigations
on non-Markovian systems both at the analytical and numerical levels. For example, our result
provides a way to determine the number of modes in a chain necessary to keep the error small, or
the time scale at which a numerical simulation can be considered accurate.
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