93 research outputs found

    A class of Bell diagonal states and entanglement witnesses

    Get PDF
    We analyze special class of bipartite states - so called Bell diagonal states. In particular we provide new examples of bound entangled Bell diagonal states and construct the class of entanglement witnesses diagonal in the magic basis.Comment: 17 page

    A class of commutative dynamics of open quantum systems

    Get PDF
    We analyze a class of dynamics of open quantum systems which is governed by the dynamical map mutually commuting at different times. Such evolution may be effectively described via spectral analysis of the corresponding time dependent generators. We consider both Markovian and non-Markovian cases.Comment: 22 page

    Bounds on the entanglement of two-qutrit systems from fixed marginals

    Get PDF
    We discuss the problem of characterizing upper bounds on entanglement in a bipartite quantum system when only the reduced density matrices (marginals) are known. In particular, starting from the known two-qubit case, we propose a family of candidates for maximally entangled mixed states with respect to fixed marginals for two qutrits. These states are extremal in the convex set of two-qutrit states with fixed marginals. Moreover, it is shown that they are always quasidistillable. As a by-product we prove that any maximally correlated state that is quasidistillable must be pure. Our observations for two qutrits are supported by numerical analysis

    Dynamics of the Born-Infeld dyons

    Get PDF
    The approach to the dynamics of a charged particle in the Born-Infeld nonlinear electrodynamics developed in [Phys. Lett. A 240 (1998) 8] is generalized to include a Born-Infeld dyon. Both Hamiltonian and Lagrangian structures of many dyons interacting with nonlinear electromagnetism are constructed. All results are manifestly duality invariant.Comment: 11 pages, LATE

    Characterizing entanglement with geometric entanglement witnesses

    Full text link
    We show how to detect entangled, bound entangled, and separable bipartite quantum states of arbitrary dimension and mixedness using geometric entanglement witnesses. These witnesses are constructed using properties of the Hilbert-Schmidt geometry and can be shifted along parameterized lines. The involved conditions are simplified using Bloch decompositions of operators and states. As an example we determine the three different types of states for a family of two-qutrit states that is part of the "magic simplex", i.e. the set of Bell-state mixtures of arbitrary dimension.Comment: 19 pages, 4 figures, some typos and notational errors corrected. To be published in J. Phys. A: Math. Theo

    Canonical formalism for the Born-Infeld particle

    Get PDF
    In the previous paper (hep-th/9712161) it was shown that the nonlinear Born-Infeld field equations supplemented by the "dynamical condition" (certain boundary condition for the field along the particle's trajectory) define perfectly deterministic theory, i.e. particle's trajectory is determined without any equations of motion. In the present paper we show that this theory possesses mathematically consistent Lagrangian and Hamiltonian formulations. Moreover, it turns out that the "dynamical condition" is already present in the definition of the physical phase space and, therefore, it is a basic element of the theory.Comment: 14 pages, LATE

    Coulomb's law modification in nonlinear and in noncommutative electrodynamics

    Full text link
    We study the lowest-order modifications of the static potential for Born-Infeld electrodynamics and for the θ\theta-expanded version of the noncommutative U(1) gauge theory, within the framework of the gauge-invariant but path-dependent variables formalism. The calculation shows a long-range correction (1/r51/r^5-type) to the Coulomb potential in Born-Infeld electrodynamics. However, the Coulomb nature of the potential (to order e2e^2) is preserved in noncommutative electrodynamics.Comment: 14 pages, 1 figur

    UV/IR duality in noncommutative quantum field theory

    Full text link
    We review the construction of renormalizable noncommutative euclidean phi(4)-theories based on the UV/IR duality covariant modification of the standard field theory, and how the formalism can be extended to scalar field theories defined on noncommutative Minkowski space.Comment: 12 pages; v2: minor corrections, note and references added; Contribution to proceedings of the 2nd School on "Quantum Gravity and Quantum Geometry" session of the 9th Hellenic School on Elementary Particle Physics and Gravity, Corfu, Greece, September 13-20 2009. To be published in General Relativity and Gravitatio

    The Newman-Janis Algorithm, Rotating Solutions and Einstein-Born-Infeld Black Holes

    Get PDF
    A new metric is obtained by applying a complex coordinate trans- formation to the static metric of the self-gravitating Born-Infeld monopole. The behaviour of the new metric is typical of a rotating charged source, but this source is not a spherically symmetric Born-Infeld monopole with rotation. We show that the structure of the energy-momentum tensor obtained with this new metric does not correspond to the typical structure of the energy momentum tensor of Einstein-Born-Infeld theory induced by a rotating spherically symmetric source. This also show, that the complex coordinate transformations have the interpretation given by Newman and Janis only in space-time solutions with linear sources

    Quantum anomaly and geometric phase; their basic differences

    Full text link
    It is sometimes stated in the literature that the quantum anomaly is regarded as an example of the geometric phase. Though there is some superficial similarity between these two notions, we here show that the differences bewteen these two notions are more profound and fundamental. As an explicit example, we analyze in detail a quantum mechanical model proposed by M. Stone, which is supposed to show the above connection. We show that the geometric term in the model, which is topologically trivial for any finite time interval TT, corresponds to the so-called ``normal naive term'' in field theory and has nothing to do with the anomaly-induced Wess-Zumino term. In the fundamental level, the difference between the two notions is stated as follows: The topology of gauge fields leads to level crossing in the fermionic sector in the case of chiral anomaly and the {\em failure} of the adiabatic approximation is essential in the analysis, whereas the (potential) level crossing in the matter sector leads to the topology of the Berry phase only when the precise adiabatic approximation holds.Comment: 28 pages. The last sentence in Abstract has been changed, the last paragraph in Section 1 has been re-written, and the latter half of Discussion has been replaced by new materials. New Conclusion to summarize the analysis has been added. This new version is to be published in Phys. Rev.
    corecore