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Abstract

We analyze special class of bipartite states – so called Bell diagonal states. In particular we provide
new examples of bound entangled Bell diagonal states and construct the class of entanglement witnesses
diagonal in the magic basis.

1 Introduction

In recent years, due to the rapid development of quantum information theory [1] the necessity of classifying
entangled states as a physical resource is of primary importance. It is well known that it is extremely hard
to check whether a given density matrix describing a quantum state of the composite system is separable
or entangled. There are several operational criteria which enable one to detect quantum entanglement
(see e.g. [2] for the recent review). The most famous Peres-Horodecki criterion is based on the partial
transposition: if a state ρ is separable then its partial transposition (1l⊗ τ)ρ is positive. States which
are positive under partial transposition are called PPT states. Clearly each separable state is necessarily
PPT but the converse is not true. We stress that it is easy to test wether a given state is PPT, however,
there is no general methods to construct PPT states.

In [3] (see also [4]) we proposed a class of bipartite states which is based on certain decomposition
of the total Hilbert space C

d⊗C
d into direct sum of d-dimensional subspaces. This decomposition is

controlled by some cyclic property, that is, knowing one subspace, say Σ0, the remaining subspaces
Σ1, . . . ,Σd−1 are uniquely determined by applying a cyclic shift to elements from Σ0. Now, we call a
density matrix ρ a circulant state if ρ is a convex combination of density matrices supported on Σα. The
crucial observation is that a partial transposition of the circulant state has again a circular structure
corresponding to another direct sum decomposition Σ̃0 ⊕ . . . ⊕ Σ̃d−1. Interestingly, also realignment
[5] leaves the circulant structure invariant. This class was generalized to multipartite systems [6]. Its
separability properties were analyzed in [7].

The class of circulant states contains a subclass of states which are diagonal in the basis of generalized
Bell states in C

d⊗C
d. The corresponding rank-1 projectors define d2–dimensional simplex known in the

literature as magic simplex. Several properties of Bell diagonal states were analyzed [8, 9, 10, 11, 12].
In the present paper we perform further studies of this special class of bipartite states. In particular we
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provide new examples of bound entangled Bell diagonal states and analyzed the class of entanglement
witnesses diagonal in the magic basis.

2 Circulant states for two qudits

Consider a class of states living in C
d⊗C

d constructed as follows: let {e0, . . . , ed−1} denotes an orthonor-
mal basis in C

d and let S : Cd → C
d be a shift operator defined as follows

Sek = ek+1 , (mod d) . (1)

One introduces d d-dimensional subspaces in C
d⊗C

d:

Σ0 = span{e0 ⊗ e0, . . . , ed−1 ⊗ ed−1} , (2)

and
Σn = (I⊗Sn)Σ0 , n = 1, . . . , d− 1 . (3)

It is clear that Σm and Σn are mutually orthogonal for m 6= n and hence the collection {Σ0, . . . ,Σd−1}
defines direct sum decomposition of Cd⊗C

d

C
d ⊗C

d = Σ0 ⊕ . . .⊕ Σd−1 . (4)

To construct a circulant state corresponding to this decomposition let us introduce d positive d × d

matrices a(n) = [a
(n)
ij ] ; n = 0, 1, . . . , d − 1. Now, define d positive operators ρn supported on Σn via the

following formula

ρn =

d−1∑

i,j=0

a
(n)
ij eij ⊗Sn eij S

∗n =

d−1∑

i,j=0

a
(n)
ij eij ⊗ ei+n,j+n . (5)

Finally, we define the circulant density operator

ρ = ρ0 + ρ1 + . . .+ ρd−1 . (6)

Normalization of ρ, that is, Tr ρ = 1, is equivalent to the following condition for matrices a(n)

Tr
(
a(0) + a(1) + . . . + a(d−1)

)
= 1 .

The crucial property of circulant states is based on the following observation [3]: the partially transposed
circulant state ρ displays similar circulant structure, that is,

(id⊗ τ)ρ = ρ̃0 ⊕ . . .⊕ ρ̃d−1 , (7)

where the operators ρ̃n are supported on the new collection of subspaces Σ̃n which are defined as follows:

Σ̃0 = span{e0 ⊗ eπ(0), e1 ⊗ eπ(1), . . . , ed−1 ⊗ eπ(d−1)} , (8)
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where π is a permutation defined by

π(k) = −k , (mod d) . (9)

It means that
π(0) = 0, π(1) = d− 1, . . . , π(d− 1) = 1 .

The remaining subspaces Σ̃n are defined by a cyclic shift

Σ̃n = (I⊗Sn)Σ̃0 , n = 1, . . . , d− 1 . (10)

Again, the collection {Σ̃0, . . . , Σ̃d−1} defines direct sum decomposition of Cd⊗C
d

C
d ⊗C

d = Σ̃0 ⊕ . . .⊕ Σ̃d−1 . (11)

Moreover, operators ρ̃n are defined as follows

ρ̃n =

d−1∑

i,j=0

ã
(n)
ij eij ⊗Sn eπ(i)π(j) S

∗n =

d−1∑

i,j=0

ã
(n)
ij eij ⊗ eπ(i)+n,π(j)+n , (12)

with

ã(n) =

d−1∑

m=0

a(n+m) ◦ (ΠSm) , (mod d) , (13)

where Π is a permutation matrix corresponding to π, that is

Πkl = δk,π(l) , (14)

and A ◦B denotes the Hadamard product of d× d matrices A and B.

Theorem 1 A circulant state ρ is PPT iff ã(n) ≥ 0 , for n = 0, 1, . . . , d− 1.

It is clear that any circulant state ρ gives rise to the completely positive map Λ : Md(C) → Md(C)
defined as follows

ρ = (id⊗Λ)P+
d , (15)

where P+
d denotes the maximally entangled state in C

d⊗C
d, that is,

P+
d =

1

d

d−1∑

k,l=0

ekl ⊗ ekl . (16)

One easily finds the following formula for the action of Λ:

Λ(ekl) =

d−1∑

n=0

a
(n)
kl ek+n,l+n . (17)
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We call Λ a circulant quantum channel if Λ is unital, i.e. Λ(I) = I. It implies the following condition
upon the collection of positive matrices a(n):

d−1∑

k=0

d−1∑

n=0

a
(n)
kk ek+n,k+n = I . (18)

Note, that a dual map Λ# defined by Tr(ρΛ(X)) = Tr(XΛ#(ρ)), is defined as follows

Λ#(ekl) =

d−1∑

n=0

a
(n)
lk ek+n,l+n , (19)

i.e. it is defined by the collection of a(n)T . It is well known that if Λ# is unital, then the original map Λ
is trace preserving. Note, that in general Λ is neither unital nor trace preserving. In the next section we
shall consider a special class of circulant states which give rise to unital and trace preserving circulant
quantum channels.

Example 1 A circulant state of 2 qubits has the following form

ρ =




a00 · · a01
· b00 b01 ·
· b10 b11 ·
a10 · · a11


 . (20)

where for a more transparent presentation we introduced matrices a := a(0) ≥ 0 and b := a(1) ≥ 0. Note,
that a circulant state (31) is usually called X-state in quantum optics community [14]. One easily finds
for the partial transposition

ρΓ =




ã00 · · ã01
· b̃00 b̃01 ·
· b̃10 b̃11 ·
ã10 · · ã11


 , (21)

where the matrices ã = [ãij ] and b̃ = [̃bij ] read as follows

ã =

(
a00 b01
b10 a11

)
, b̃ =

(
b00 a01
a10 b11

)
. (22)

Hence, ρ defined in (31) is PPT iff
ã ≥ 0 and b̃ ≥ 0 , (23)

and hence

a00a11 ≥ |b01|2 , b00b11 ≥ |a01|2 . (24)

4



Example 2 A circulant state of 2 qutrits has the following form

ρ =




a00 · · · a01 · · · a02
· b00 · · · b01 b02 · ·
· · c00 c01 · · · c02 ·
· · c10 c11 · · · c12 ·
a10 · · · a11 · · · a12
· b10 · · · b11 b12 · ·
· b20 · · · b21 b22 · ·
· · c20 c21 · · · c22 ·
a20 · · · a21 · · · a22




, (25)

where a := a(0) ≥ 0, b := a(1) ≥ 0 and c := a(2) ≥ 0. One easily finds for the partial transposition

ρΓ =




ã00 · · · · ã01 · ã02 ·
· b̃00 · b̃01 · · · · b̃02
· · c̃00 · c̃01 · c̃02 · ·
· b̃10 · b̃11 · · · · b̃12
· · c̃10 · c̃11 · c̃12 · ·
ã10 · · · · ã11 · ã12 ·
· · c̃20 · c̃21 · c̃22 · ·
ã20 · · · · ã21 · ã22 ·
· b̃20 · b̃21 · · · · b̃22




, (26)

where the matrices ã = [ãij ], b̃ = [̃bij ] and c̃ = [c̃ij ] read as follows

ã =




a00 c01 b02
c10 b11 a12
b20 a21 c22


 , b̃ =




b00 a01 c02
a10 c11 b12
c20 b21 a22


 , c̃ =




c00 b01 a02
b10 a11 c12
a20 c21 b22


 . (27)

For more examples see [3]. Interestingly, circulant structure is preserved under realignment.

Proposition 1 The realignment of the circulant bipartite operator

A =
d−1∑

n,i,j=0

a
(n)
ij eij ⊗ ei+n,j+n , (28)

reads

R(A) =

d−1∑

n,i,j=0

R
(n)
ij eij ⊗ ei+n,j+n , (29)

where
R

(n)
ij = a

(j−i)
i+n,j . (30)
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Example 3 The realignment of ρ defined in (31) leads to

R(ρ) =




a00 · · b00
· a10 b10 ·
· b01 a01 ·
b11 · · a11


 . (31)

Hence in this case one has

R(0) =

(
a00 b00
b11 a11

)
, R(1) =

(
a10 b10
b01 a01

)
. (32)

Example 4 The realignment of ρ defined in (25) leads to the circulant structure with

R(0) =




a00 b00 c00
c11 a11 b11
b22 c22 a22


 , R(1) =




a10 b10 c10
c21 a21 b21
b02 c02 a02


 , R(2) =




a20 b20 c20
c01 a01 b01
b12 c12 a12


 , (33)

and it my be easily generalized arbitrary dimension d.

3 Generalized Bell diagonal states

Consider now a simplex of Bell diagonal states [8, 10, 11, 12] defined by

ρ =

d−1∑

m,n=0

pmnPmn , (34)

where pmn ≥ 0,
∑

m,n pmn = 1 and

Pmn = (I⊗Umn)P
+
d (I⊗U †

mn) , (35)

with Umn being the collection of d2 unitary matrices defined as follows

Umnek = λmkSnek = λmkek+n , (36)

with
λ = e2πi/d . (37)

The matrices Umn define an orthonormal basis in the space Md(C) of complex d× d matrices. One easily
shows

Tr(UmnU
†
rs) = d δmrδns . (38)

Some authors [13] call Umn generalized spin matrices since for d = 2 they reproduce standard Pauli
matrices:

U00 = I , U01 = σ1 , U10 = iσ2 , U11 = σ3 . (39)
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Let us observe that Bell diagonal states (34) are circulant states in C
d⊗C

d. Indeed, maximally entangled
projectors Pmn are supported on Σn, that is,

Πn = P0n + . . .+ Pd−1,n , (40)

defines a projector onto Σn, i.e.
Σn = Πn(C

d ⊗C
d) . (41)

One easily shows that the corresponding matrices a(n) are given by

a(n) = HD(n)H∗ , (42)

where H is a unitary d× d matrix defined by

Hkl :=
1√
d
λkl , (43)

and D(n) is a collection of diagonal matrices defined by

D
(n)
kl := pknδkl . (44)

One has

a
(n)
kl =

1

d

d−1∑

m=0

pmnλ
m(k−l) , (45)

and hence it defines a circulant matrix
a
(n)
kl = f

(n)
k−l , (46)

where the vector f
(n)
m is the inverse of the discrete Fourier transform of pmn (n is fixed).

Consider now partial transposition of Bell diagonal states. One has the following

Theorem 2 If d is odd all matrices ã(n) are unitary equivalent

ã(n) = Snã(0)S†n , (47)

for n = 0, 1, . . . , d− 1. If d is even one has two groups of unitary equivalent matrices:

ã(2k) = Skã(0)S† k , (48)

and
ã(2k+1) = Skã(1)S† k , (49)

for k = 0, 1, . . . , d/2 − 1.

Therefore

Corollary 1 Bell diagonal state is PPT if

• ã(0) ≥ 0 for d odd,
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• ã(0) ≥ 0 and ã(1) ≥ 0 for d even.

The corresponding completely positive map Λ : Mn(C) → Mn(C) is defined by the following Kraus
representation

Λ(X) =

d−1∑

m,n=0

pmnUmnXU
†
mn , (50)

where pmn ≥ 0 and
∑

m,n pmn = 1. One has Λ(I) =
∑

m,n pmn I = I, which proves that Λ is unital. Note,
that the dual map

Λ#(X) =

d−1∑

m,n=0

pmnU
†
mnXUmn , (51)

is unital as well. Hence, Λ defines unital and trace preserving quantum channel (doubly stochastic
completely positive map).

4 Special cases

In this section we analyze special classes of Bell diagonal states.

4.1 d = 2

For 2-qubit case one obtains the following density operator

a(n) =

(
xn yn
yn xn

)
, (52)

where

xn =
1

2
(p0n + p1n) , yn =

1

2
(p0n − p1n) , (53)

for n = 0, 1. The state is PPT if and only if

x20 ≥ |y1|2 , x21 ≥ |y0|2 . (54)

The above conditions imply well known result that 2-qubit Bell diagonal state is PPT (and hence sepa-
rable) if and only if

pmn ≤ 1

2
. (55)

4.2 d = 3

For d = 3 the Bell diagonal state is defined by the collection of 3 matrices

a(n) =




xn zn zn
zn xn zn
zn zn xn


 , n = 0, 1, 2 , (56)
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where

xn =
1

3
(p0n + p1n + p2n) , (57)

and

zn =
1

3
(p0n + λp1n + λp2n) . (58)

Now, the PPT condition reduces to the positivity of ã(0)

ã(0) =




x0 z2 z1
z2 x1 z0
z1 z0 x2


 ≥ 0 , (59)

which is equivalent to the following conditions

x0x1 ≥ |z2|2 , (60)

and
x0x1x2 + 2Re z0z1z2 ≥ x0|z0|2 + x1|z1|2 + x2|z2|2 . (61)

Hence, even for d = 3 the PPT condition is by no means simple. It might considerably simplify if we
specify xn and zn. Assume for example that z0 = 0. Then (60)–(61) imply

x0x1x2 ≥ x1|z1|2 + x2|z2|2 . (62)

4.3 d = 4

For d = 4 the Bell diagonal state is defined by the collection of 4 matrices

a(n) =




xn zn yn zn
zn xn zn yn
yn zn xn zn
zn yn zn xn


 , n = 0, 1, 2, 3 , (63)

where

xn =
1

4
(p0n + p1n + p2n + p3n) ,

yn =
1

4
(p0n − p1n + p2n − p3n) , (64)

zn =
1

4
(p0n + ip1n − p2n − ip3n) .

Bell diagonal state of two qutrits is PPT iff

ã(0) =




x0 z4 y2 z1
z4 x2 z1 y0
y2 z1 x0 z4
z1 y0 z4 x2


 ≥ 0 , and ã(1) =




x1 z0 y3 z2
z0 x3 z2 y1
y3 z2 x1 z0
z2 y1 z0 x3


 ≥ 0 . (65)
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4.4 Special form of pmn

Consider now special examples of Bell diagonal states by specifying the structure of probability distribu-
tion pmn. Let

pmn = δmkπn , (66)

with π0 + . . .+ πd−1 = 1. It gives rise to

ρ =
d−1∑

n=0

πnPkn . (67)

For example if d = 2 and k = 0 one obtains

ρ =
1

2




π0 · · π0
· π1 π1 ·
· π1 π1 ·
π0 · · π0


 . (68)

This state is separable if and only if π0 = π1 = 1/2. One easily generalizes this observation as follows

Proposition 2 Bell diagonal state (67) is separable if and only if

π0 = . . . = πd−1 =
1

d
. (69)

Another characteristic class corresponds to

pmn = qmpn , (70)

i.e. pmn represents the product distribution. One has

ρ =
d−1∑

k,l=0

pklPkl = ρ0 ⊕ . . .⊕ ρd−1 , (71)

where

ρn = pn

d−1∑

m=0

qmPmn . (72)

Note, that matrices a(n) are related as follows

a(n) = pna , (73)

where the matrix a reads

akl =
1

d

d−1∑

m=0

λm(k−l) qm . (74)

Proposition 3 Bell diagonal state (71) is separable if and only if

p0 = . . . = pd−1 =
1

d
. (75)
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4.5 Generalized lattice states

Consider now a family of unitary operators acting on N copies of Cd

Umn = Um1n1
⊗ . . . ⊗UmNnN

, (76)

where m = (m1, . . . ,mN ) and n = (n1, . . . , nN ). It is clear that Umn defines a family of D2 = d2N

unitary operators in in C
D = C

d⊗N . Note that

Tr(UmnU
†
kl
) = D δmkδnl . (77)

Now, let |ψ+
D〉 denote a maximally entangled state in C

D ⊗C
D defined by

ψ+
D =

1√
D

∑

k

ek ⊗ ek , (78)

where
ek = ek1 ⊗ . . . ⊗ ekN . (79)

One defines a family of maximally entangled states by

|ψmn〉 = (I⊗Umn)|ψ+
D〉 . (80)

These states are parameterized a point (m,n) in the N -dimensional lattice L
(d)
(N) consisting of D2 points.

Now, a generalized lattice state is defined by a collection of points from L
(d)
(N): for any subset I ⊂ L

(d)
(N)

one defines

ρI =
1

|I|
∑

(m,n)∈I

Pmn , (81)

where Pmn = |ψmn〉〈ψmn| and |I| stands for the cardinality of I. Clearly, 1 ≤ |I| ≤ |L(d)
(N)| = D2. Let us

observe that the above construction generalized a class of lattice states presented in [15, 16, 17]. Lattice
states of Benatti et. al. correspond to d = 2. In this case Umn are defined in terms of Pauli matrices (see
formula (39)).

5 Bound entangled Bell diagonal states

5.1 Two qutrits

Consider the following family of Bell diagonal states

ρε = Nε(P00 + εΠ1 + ε−1Π2) , ε > 0 , (82)

where the projectors Πk are defined in (40) and the normalization factor reads

Nε =
1

1 + ε+ ε−1
. (83)
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It corresponds to (cf. formulae (64) and (58))

x0 =
Nε

3
, x1 =

Nε

3
ε , x2 =

Nε

3
ε−1 , (84)

and

z0 =
Nε

3
, z1 = z2 = 0 . (85)

Hence, conditions (60)–(61) are trivially satisfied showing that (82) defines a family of PPT states. Now,
it is well known [21] that ρε is separable if and only if ε = 1. Hence, for ε 6= 1 it defines a family of bound
entangled state in C

3⊗C
3. The entanglement of ρε can be detected by using a realignment criterion

[5]. In the next section we show that it can be detected also by the Bell diagonal entanglement witness.
Note, that asymptotically

lim
ε→0

ρε =
1

3
Π2 , lim

ε→∞
ρε =

1

3
Π1 , (86)

that is, one obtains separable states defined by normalized separable projectors onto Σ2 and Σ1, respec-
tively.

5.2 Two qudits

Consider a family of states in C
d ⊗ C

d defined by [18, 20]

ργ =
1

N γ

d−1∑

i,j=0

eij ⊗Aγ
ij , (87)

where d× d matrices

Aγ
ij =





eij for i 6= j ,

e00 + aγe11 +
∑d−2

ℓ=2 eℓℓ + bγed−1,d−1 for i = j = 0 ,

Sj−1Aγ
00S

†j−1 for i = j 6= 1

(88)

with

aγ =
1

d
(γ2 + d− 1) , bγ =

1

d
(γ−2 + d− 1) , (89)

and the normalization factor reads
Nγ = d2 − 2 + γ2 + γ−2 . (90)

It gives the following spectral decomposition

ργ =
1

Nγ

(
dP00 + aγΠ1 +

d−2∑

ℓ=2

Πℓ + bγΠd−1

)
. (91)
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In particular for d = 3 one obtains the following matrix representation:

ργ =
1

Nγ




1 · · · 1 · · · 1
· aγ · · · · · · ·
· · bγ · · · · · ·
· · · bγ · · · · ·
1 · · · 1 · · · 1
· · · · · aγ · · ·
· · · · · · aγ · ·
· · · · · · · bγ ·
1 · · · 1 · · · 1




=
1

Nγ
(3P00 + aγΠ1 + bγΠ2) , (92)

with aγ = 1
3(γ

2 + 2) , bγ = 1
3 (γ

−2 + 2) and the normalization factor Nγ = 7 + γ2 + γ−2.

6 Bell diagonal entanglement witnesses

Interestingly many well known entanglement witnesses displaying circulant structure are Bell diagonal.
It is well known that any entanglement witness W can be represented as a difference W = W+ −W−,
where both W+ and W− are semi-positive operators in B(Cd⊗C

d). However, there is no general method
to recognize that W defined by W+−W− is indeed an EW. An interesting class of such witnesses may be
constructed using their spectral properties [22, 23]. Let ψα (α = 0, 1, . . . , d2−1) be an orthonormal basis
in C

d⊗C
d and denote by Pα the corresponding projector Pα = |ψα〉〈ψα|. Now, take d2 semi-positive

numbers λα ≥ 0 such that λα is strictly positive for α > L, and define

W− =
L∑

α=0

λαPα , W+ =
d2−1∑

α=L

λαPα , (93)

where L is an arbitrary integer 0 < L < d2 − 1. This construction guarantees that W+ is strictly positive
and all zero modes and strictly negative eigenvalues of W are encoded into W−. Consider normalized
vector ψ ∈ C

d⊗C
d and let s1(ψ) ≥ . . . ≥ sd(ψ) denote its Schmidt coefficients. For any 1 ≤ k ≤ d one

defines k-norm of ψ by the following formula

||ψ||2k =
k∑

j=1

s2j(ψ) . (94)

It is clear that
||ψ||1 ≤ ||ψ||2 ≤ . . . ≤ ||ψ||d . (95)

Note that ||ψ||1 gives the maximal Schmidt coefficient of ψ, whereas due to the normalization, ||ψ||2d =
〈ψ|ψ〉 = 1. One proves [22] the following

Theorem 3 Let
∑L−1

α=0 ||ψα||2k < 1 . If the following spectral conditions are satisfied

λα ≥ µk , α = L, . . . , d2 − 1 , (96)
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where

µℓ :=

∑L−1
α=0 λα||ψα||2ℓ

1−
∑L−1

α=0 ||ψα||2ℓ
, (97)

then W is an k-EW. If moreover
∑L

α=1 ||ψα||2k+1 < 1 and

µk+1 > λα , α = L, . . . , d2 − 1 , (98)

then W being k-EW is not (k + 1)-EW.

Let us observe that if ψ is maximally entangled then

||ψ||2k =
k

d
. (99)

Consider, therefore, the family of Bell diagonal states ψmn. On has the following

Corollary 2 If L < d and
λα ≥ µ1 , α = L, . . . , d2 − 1 , (100)

with µ1 =
1

d−L

∑L−1
α=0 λα , then W =W+ −W− defines Bell diagonal entanglement witness.

Example 5 Consider well known entanglement witness in d = 2 represented by the flip operator

F =




1 · · ·
· · 1 ·
· 1 · ·
· · · 1


 . (101)

Note that
F = P00 + P10 + P01 − P11 , (102)

which proves that F is Bell diagonal and possesses single negative eigenvalue.

Example 6 A family of EWs in C3⊗C3 defined by [24]

W [a, b, c] =




a · · · −1 · · · −1
· b · · · · · · ·
· · c · · · · · ·
· · · c · · · · ·

−1 · · · a · · · −1
· · · · · b · · ·
· · · · · · b · ·
· · · · · · · c ·

−1 · · · −1 · · · a




, (103)

with a, b, c ≥ 0. Necessary and sufficient conditions for W [a, b, c] to be an EW are

1. 0 ≤ a < 2 ,
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2. a+ b+ c ≥ 2 ,

3. if a ≤ 1 , then bc ≥ (1− a)2.

A family W [a, b, c] generalizes celebrated Choi indecomposable witness corresponding to a = b = 1 and
c = 0. One finds the following spectral representation

W [a, b, c] = (a− 2)P00 + (a+ 1)(P10 + P20) + bΠ1 + cΠ2 , (104)

which shows that W [a, b, c] is Bell diagonal with a single negative eigenvalue ‘a− 2’.

Example 7 Consider a family of EWs defined by [20]

Wλ,µ =




1 · · · −1 · · · −1
· 1 + µ · · · µ µ · ·
· · λ λ · · · λ ·
· · λ λ · · · λ ·
−1 · · · 1 · · · −1
· µ · · · 1 + µ µ · ·
· µ · · · µ 1 + µ · ·
· · λ λ · · · λ ·
−1 · · · −1 · · · 1




, (105)

with λ, µ ≥ 0. Note that W0,0 =W [1, 1, 0]. One obtains for the spectral decomposition

Wλ,µ = −3P00 + 2Π0 +Π1 + 3µP01 + 3λP02 . (106)

Let γ > 0. One shows [20] that for

λ <
1− γ2

2 + γ−2
, (107)

and

µ <
1− γ2 − λ(2 + γ−2)

2 + γ2
, (108)

Wλ,µ defines an indecomposable EW due to Tr(Wλ,µργ) < 0.

Example 8 Entanglement witness corresponding to the reduction map Λ(X) = ITrX − X in Md(C).
One has

W =
1

d
I⊗ I− P+

d =
1

d

d−1∑

k,l=0

Pkl − P00 , (109)

which shows that W is Bell diagonal with a single negative eigenvalue (1− d)/d.

Example 9 A family of EWs in C
d⊗C

d defined by [18, 20]

Wd,k =

d−1∑

i,j=0

eij ⊗Xd,k
ij , (110)
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where the d× d matrices Xd,k
ij are defined as

Xd,k
ij =

{
(d− k − 1)eii +

∑k
ℓ=1 S

ℓ eii S
ℓ for i = j ,

−eij for i 6= j ,
(111)

It is well known [18] that Wd,k defines an indecomposable EW for k = 1, 2, . . . , d − 2. For k = d − 1 it
reproduces the witness corresponding to the reduction map. Note that for d = 3 and k = 1 it reproduces
W [a, b, c] with a = b = 1 and c = 0. On easily finds the following spectral representation

Wd,k = (d− k)Π0 +

k∑

ℓ=1

Πk − dP00 , (112)

showing that Wd,k is Bell diagonal and the single negative eigenvalue corresponds to the maximally
entangled state P00.

7 Conclusions

We analyzed a class of bipartite circulant states which are diagonal with respect to generalized Bell
(magic) basis. Such states are characterized by an elegant symmetry which considerably simplifies their
analysis. We analyzed several examples of bound entangled states and provided corresponding entangle-
ment witnesses which are Bell diagonal.
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