13 research outputs found
Are Morphometrics Sufficient for Estimating Age of Pre-Fledging Birds in the Field? A Test Using Common Terns (<i>Sterna hirundo)</i>
<div><p>Age is a key component of fitness, affecting survival and reproductive capacities. Where it is not possible to study known individuals from birth, morphometrics (predominantly patterns of plumage development for birds) are most often used to estimate age. Although criteria for age estimations exist for many species, the degree to which these criteria improve the precision of estimates remains to be tested, restricting their widespread acceptance. We develop a photographic tool for estimating ages of Common Tern (<i>Sterna hirundo</i>) chicks and test it using 100 human observers of varying prior experience across four breeding colonies (three North American sites and one European site) and under controlled laboratory conditions. We followed the design approach of other morphometric tools, expanding it to create a user-friendly guide (divided into six age groupings). The majority (86%) of observers improved in chick-aging accuracy when using the tool by an average of 20.1% (±1.4 SE) and correctly estimated 60.3% (±1.4) of chick ages. This was similar to the intrinsic aging ability of our best field observer (63.3%). Observers with limited experience showed the greatest increases in chick-aging accuracy over experienced observers who likely had established a method for estimating chick ages prior to using the tool. Even the best observers only correctly estimated ages of chicks 62.9% (±2.8) of the time in the field and 84.0% (±2.9) of the time in the lab when using the tool and typically underestimated ages. This indicates that developmental variation between individual chicks can prevent completely reliable age estimates and corroborates the few existing data that suggest that morphometric criteria fail to achieve robust levels of accuracy and may introduce error into studies that rely on them. We conclude that novel approaches for estimating age, not only morphometric criteria, must be pursued.</p></div
Mean chick-aging accuracy without and with the tool for observers in field and laboratory tests.
<p>Chick-aging accuracy is the percentage of chicks aged correctly by observers when not using (dark gray) and when using (light gray) and the aging tool. Error bars are ±1 SE.</p
Morphometric features most often used for aging estimates prior to and when using the tool.
<p>Data are percents of responses of observers in laboratory tests (n = 87) when asked which criteria they used to estimate age.</p><p>Morphometric features most often used for aging estimates prior to and when using the tool.</p
Example of age group from the tool.
<p>Age group 6 (chicks 20–23 days old) is shown (full tool is provided as <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0111987#pone.0111987.s001" target="_blank">Fig. S1</a>). Within the age group, pictured chicks increase in age from left to right; an image of the outstretched wing of the oldest chick is provided. Morphometric data summaries and key diagnostic characteristics are also shown.</p
Boxplots of improvement in chick-aging accuracy when using tool for observers of different prior experience in (a) field and (b) laboratory tests.
<p>Improvement in chick-aging accuracy is the difference in the percentage of chicks aged correctly when using the tool versus without the tool. Sample sizes of observers are given in parentheses next to axis labels. “No Experience” = no prior experience working with any birds, “Some Experience” = <1 year working with birds (including Common Terns) [for laboratory trials this was any previous experience with birds], and “Most Experience” = 1+ years working with Common Terns.</p
hoisting engine
hoisting engine[PT] No engine; only th'hoisting engine,that's all.YesJ. D. A. WIDDOWSON JUL 1973Not UsedNot usedWithdrawnChecked by Jordyn Hughes on Wed 22 Apr 201
Assessing changes to ecosystem structure and function following invasion by Spartina alterniflora and Phragmites australis: a meta-analysis [Supplemental Files]
Includes data and R codeBiological invasions resulting from anthropogenic activities are one of the greatest threats to maintaining ecosystem functioning and native biodiversity. Invasions are especially problematic when the invading species behaves as an ecosystem engineer that is capable of transforming ecosystem structure, function, and community dynamics. Of particular concern is the spread of emergent wetland grasses whose root systems alter hydrology and structural stability of soils, modify ecosystem functions, and change community dynamics and species richness. To address the threats posed to ecosystems across the globe, management practices focus on the control and removal of invasive grasses. However, it remains unclear how severely invasive grasses alter ecosystem functions and whether alterations persist after invasive grass removal, limiting our ability to determine if management practices are truly sufficient to fully restore ecosystems. Here, we conducted a meta-analysis to quantify ecological alterations and the efficacy of management following the invasion of Spartina alterniflora and Phragmites australis, two common and pervasive invaders in coastal wetlands. Our results indicate that S. alterniflora and P. australis significantly alter measures of ecosystem functioning and organismal abundance. Invaded ecosystems had significant elevations in abiotic carbon and nitrogen fixation and uptake in areas with invasive grasses, with differential photosynthetic pathways of these two grass species further explaining carbon fluxes. Moreover, evidence from our analyses indicates that management practices may not adequately promote recovery from invasion, but more data are needed to fully assess management efficacy. We call for future studies to conduct pairwise comparisons between uninvaded, invaded, and managed systems and provide research priorities
Recommended from our members
Harnessing island-ocean connections to maximize marine benefits of island conservation
Islands support unique plants, animals, and human societies found nowhere else on the Earth. Local and global stressors threaten the persistence of island ecosystems, with invasive species being among the most damaging, yet solvable, stressors. While the threat of invasive terrestrial mammals on island flora and fauna is well recognized, recent studies have begun to illustrate their extended and destructive impacts on adjacent marine environments. Eradication of invasive mammals and restoration of native biota are promising tools to address both island and ocean management goals. The magnitude of the marine benefits of island restoration, however, is unlikely to be consistent across the globe. We propose a list of six environmental characteristics most likely to affect the strength of land-sea linkages: precipitation, elevation, vegetation cover, soil hydrology, oceanographic productivity, and wave energy. Global databases allow for the calculation of comparable metrics describing each environmental character across islands. Such metrics can be used today to evaluate relative potential for coupled land-sea conservation efforts and, with sustained investment in monitoring on land and sea, can be used in the future to refine science-based planning tools for integrated land-sea management. As conservation practitioners work to address the effects of climate change, ocean stressors, and biodiversity crises, it is essential that we maximize returns from our management investments. Linking efforts on land, including eradication of island invasive mammals, with marine restoration and protection should offer multiplied benefits to achieve concurrent global conservation goals
Recommended from our members
Harnessing island–ocean connections to maximize marine benefits of island conservation
Islands support unique plants, animals, and human societies found nowhere else on the Earth. Local and global stressors threaten the persistence of island ecosystems, with invasive species being among the most damaging, yet solvable, stressors. While the threat of invasive terrestrial mammals on island flora and fauna is well recognized, recent studies have begun to illustrate their extended and destructive impacts on adjacent marine environments. Eradication of invasive mammals and restoration of native biota are promising tools to address both island and ocean management goals. The magnitude of the marine benefits of island restoration, however, is unlikely to be consistent across the globe. We propose a list of six environmental characteristics most likely to affect the strength of land-sea linkages: precipitation, elevation, vegetation cover, soil hydrology, oceanographic productivity, and wave energy. Global databases allow for the calculation of comparable metrics describing each environmental character across islands. Such metrics can be used today to evaluate relative potential for coupled land-sea conservation efforts and, with sustained investment in monitoring on land and sea, can be used in the future to refine science-based planning tools for integrated land-sea management. As conservation practitioners work to address the effects of climate change, ocean stressors, and biodiversity crises, it is essential that we maximize returns from our management investments. Linking efforts on land, including eradication of island invasive mammals, with marine restoration and protection should offer multiplied benefits to achieve concurrent global conservation goals