114 research outputs found

    Approaches for Studying Fish Production: Do River and Lake Researchers Have Different Perspectives? – Extended Abstract

    Get PDF
    Biased perspectives of fisheries researchers may hinder scientific progress and effective management if limiting factors controlling productivity go unrecognized. We investigated whether river and lake researchers used different approaches when studying salmonid production and whether any differences were ecologically supported. We assessed 564 peer‐reviewed papers published between 1966 and 2012 that studied salmonid production or surrogate variables (e.g., abundance, growth, biomass, population) and classified them into five major predictor variable categories: physical habitat, fertility (i.e., nutrients, bottom‐up), biotic, temperature, and pollution. The review demonstrated that river researchers primarily analyzed physical habitat (65% of studies) and lake researchers primarily analyzed fertility (45%) and biotic (51%) variables. Nevertheless, understudied variables were often statistically significant predictors of production for lake and river systems and, combined with other evidence, suggests that unjustified a priori assumptions may dictate the choice of independent variables studied. Broader consideration of potential limiting factors on fish production, greater research effort on understudied genera, and increased publication in broadly scoped journals would likely promote integration between lentic and lotic perspectives and improve fisheries management

    Bump2Baby and Me:protocol for a randomised trial of mHealth coaching for healthy gestational weight gain and improved postnatal outcomes in high-risk women and their children

    Get PDF
    BACKGROUND: Gestational diabetes (GDM) impacts 8–18% of pregnancies and greatly increases both maternal and child risk of developing non-communicable diseases such as type 2 diabetes and obesity. Whilst lifestyle interventions in pregnancy and postpartum reduce this risk, a research translation gap remains around delivering implementable interventions with adequate population penetration and participation. Impact Diabetes Bump2Baby is an implementation project of an evidence-based system of care for the prevention of overweight and obesity. Bump2Baby and Me is the multicentre randomised controlled trial investigating the effectiveness of a mHealth coaching programme in pregnancy and postpartum for women at high risk of developing GDM. METHODS: Eight hundred women will be recruited in early pregnancy from 4 clinical sites within Ireland, the UK, Spain, and Australia. Women will be screened for eligibility using the validated Monash GDM screening tool. Participants will be enrolled from 12 to 24 weeks’ gestation and randomised on a 1:1 basis into the intervention or control arm. Alongside usual care, the intervention involves mHealth coaching via a smartphone application, which uses a combination of synchronous and asynchronous video and text messaging, and allows for personalised support and goal setting with a trained health coach. The control arm receives usual care. All women and their children will be followed from early pregnancy until 12 months postpartum. The primary outcome will be a difference in maternal body mass index (BMI) of 0.8 kg/m(2) at 12 months postpartum. Secondary maternal and infant outcomes include the development of GDM, gestational weight gain, pregnancy outcomes, improvements in diet, physical activity, sleep, and neonatal weight and infant growth patterns. The 5-year project is funded by the EU Commission Horizon 2020 and the Australian National Health and Medical Research Council. Ethical approval has been received. DISCUSSION: Previous interventions have not moved beyond tightly controlled efficacy trials into routine service delivery. This project aims to provide evidence-based, sustainable support that could be incorporated into usual care for women during pregnancy and postpartum. This study will contribute evidence to inform the early prevention of non-communicable diseases like obesity and diabetes in mothers and the next generation. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12620001240932. Registered on 19 November 2020 SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13063-021-05892-4

    Rapid Downregulation of DAB2 by Toll-Like Receptor Activation Contributes to a Pro-Inflammatory Switch in Activated Dendritic Cells

    Get PDF
    Dendritic cells (DCs) are pivotal in regulating tolerogenic as well as immunogenic responses against microorganisms by directing both the innate and adaptive immune response. In health, phenotypically different DC subsets found in the gut mucosa are maintained in their tolerogenic state but switch to a pro-inflammatory phenotype during infection or chronic autoinflammatory conditions such as inflammatory bowel disease (IBD). The mechanisms that promote the switch among the mucosal DCs from a tolerogenic to an immunogenic, pro-inflammatory phenotype are incompletely understood. We hypothesized that disabled homolog 2 (DAB2), recently described as a negative regulator of DC immunogenicity during their development, is regulated during intestinal inflammation and modulates mucosal DC function. We show that DAB2 is highly expressed in colonic CD11b+CD103− DCs, a subset known for its capacity to induce inflammatory Th1/Th17 responses in the colon, and is downregulated predominantly in this DC subset during adoptive T cell transfer colitis. Administration of Dab2-deficient DCs (DC2.4Dab2−/− cells) modulated the course of DSS colitis in wild-type mice, enhanced mucosal expression of Tnfa, Il6, and Il17a, and promoted neutrophil recruitment. In bone-marrow derived dendritic cells (BMDC), DAB2 expression correlated with CD11b levels and DAB2 was rapidly and profoundly inhibited by TLR ligands in a TRIF- and MyD88-dependent manner. The negative modulation of DAB2 was biphasic, initiated with a quick drop in DAB2 protein, followed by a sustained reduction in Dab2 mRNA. DAB2 downregulation promoted a more functional and activated DC phenotype, reduced phagocytosis, and increased CD40 expression after TLR activation. Furthermore, Dab2 knockout in DCs inhibited autophagy and promoted apoptotic cell death. Collectively, our results highlight the immunoregulatory role for DAB2 in the intestinal dendritic cells and suggest that DAB2 downregulation after microbial exposure promotes their switch to an inflammatory phenotype

    The Role of Curcumin in Modulating Colonic Microbiota During Colitis and Colon Cancer Prevention:

    Get PDF
    Intestinal microbiota influences the progression of colitis-associated colorectal cancer (CAC). With diet being a key determinant of the gut microbial ecology, dietary interventions are an attractive avenue for the prevention of CAC. Curcumin is the most active constituent of the ground rhizome of the Curcuma Longa plant, which has been demonstrated to have anti-inflammatory, anti-oxidative and anti-proliferative properties

    Genome sequences of four cluster P mycobacteriophages

    Get PDF
    Four bacteriophages infecting Mycobacterium smegmatis mc2155 (three belonging to subcluster P1 and one belonging to subcluster P2) were isolated from soil and sequenced. All four phages are similar in the left arm of their genomes, but the P2 phage differs in the right arm. All four genomes contain features of temperate phages

    Brief Report: Theatre as Therapy for Children with Autism Spectrum Disorder

    Get PDF
    The pilot investigation evaluated a theatrical intervention program, Social Emotional NeuroScience Endocrinology (SENSE) Theatre, designed to improve socioemotional functioning and reduce stress in children with autism spectrum disorder (ASD). Eight children with ASD were paired with typically developing peers that served as expert models. Neuropsychological, biological (cortisol and oxytocin), and behavioral measures were assessed in a pretest–posttest design. The intervention was embedded in a full musical theatrical production. Participants showed some improvement in face identification and theory of mind skills. The intervention shows potential promise in improving the socioemotional functioning in children with ASD through the utilization of peers, video and behavioral modeling, and a community-based theatrical setting

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic H2(e,eâ€Čps)X scattering with CLAS

    Get PDF
    Background: Much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable <i>x</i>. As a consequence, the same data can lead to different conclusions, for example, about the behavior of the d quark distribution in the proton at large<i> </i>x. Purpose: The Barely Off-shell Nucleon Structure experiment at Jefferson Lab measured the inelastic electron-deuteron scattering cross section, tagging spectator protons in coincidence with the scattered electrons. This method reduces nuclear binding uncertainties significantly and has allowed for the first time a (nearly) model-independent extraction of the neutron structure function F<sub>2</sub>(x,Q<sup>2</sup>) in the resonance and deep-inelastic regions. Method: A novel compact radial time projection chamber was built to detect protons with momentum between 70 and 150 MeV/c and over a nearly 4π angular range. For the extraction of the free-neutron structure function F<sup>n2</sup>, spectator protons at backward angles (>100∘ relative to the momentum transfer) and with momenta below 100 MeV/c were selected, ensuring that the scattering took place on a nearly free neutron. The scattered electrons were detected with Jefferson Lab's CLAS spectrometer, with data taken at beam energies near 2, 4, and 5 GeV. Results: The extracted neutron structure function F<sup>n2</sup> and its ratio to the inclusive deuteron structure function F<sup>d2</sup> are presented in both the resonance and the deep-inelastic regions for momentum transfer squared Q<sup>2</sup> between 0.7 and 5 GeV<sup>2</sup>/c<sup>2</sup>, invariant mass W between 1 and 2.7 GeV/c<sup>2</sup>, and Bjorken x between 0.25 and 0.6 (in the deep-inelastic scattering region). The dependence of the semi-inclusive cross section on the spectator proton momentum and angle is investigated, and tests of the spectator mechanism for different kinematics are performed. Conclusions: Our data set on the structure function ratio F<sup>n2</sup>/Fd2 can be used to study neutron resonance excitations, test quark-hadron duality in the neutron, develop more precise parametrizations of structure functions, and investigate binding effects (including possible mechanisms for the nuclear EMC effect) and provide a first glimpse of the asymptotic behavior of d/u at x→1
    • 

    corecore