74 research outputs found

    A GIS based anthropogenic PM10 emission inventory for Greece

    Get PDF
    AbstractAn anthropogenic, chemically speciated PM10 emission inventory was compiled for Greece in 10km spatial resolution. The inventory comprises of all anthropogenic particulate matter sources and it was compiled using a Geographical Information System (GIS) integrated with SQL programming language. Input data from the national and international databases were used for the calculation of spatially and temporally resolved emissions for the road transport and all the subsectors of the other mobile sources and machinery sector using top–down or bottom–up methodologies. Annual data from existing emission databases were also used and were temporally and spatially disaggregated using source relevant statistical data and high resolution maps. The sectoral emission totals are compared with other emission databases or studies conducted in the area. Total anthropogenic emissions in Greece were estimated to be 182 219t for the base year 2003. The results indicate the industrial sector as the major PM10 emission source (39.9% contribution) with the major industrial units though to be situated inside the organised industrial areas of the country. The power generation sector (21.4%) is the second largest contributor in national level mostly derived from one specific industrial region at north. International cargo shipping activities (9.6%) is also an important source category for particles. Heat production and road transport are found to play a significant role inside the urban centres of the country

    Comparison of UV-B measurements performed with a Brewer spectrophotometer and a new UVB-1 broad band detector

    Get PDF
    Measurements of the UV-B erythemal dose, based on solar spectra acquired with a Brewer spectrophotometer at Thessaloniki, Greece, are compared to measurements performed with the recently introduced, by the Yankee Environmental Systems, (Robertson type) broad band solar UV-B detector. The spectral response function of this detector, when applied to the Brewer spectral UV-B measurements, results in remarkably comparable estimates of the erythemal UV-B dose. The two instruments provide similar information on the UV-B dose when they are cross-examined under a variety of meteorological and atmospheric conditions and over the a large range of solar zenith angles and total ozone

    Prediction of climate change impacts on cotton yields in greece under eight climatic models using the aquacrop crop simulation model.

    Get PDF
    The impact of climate change on cotton yields in seven main arable crop sites in Greece (Agrinio, Alexandroupolis, Arta, Karditsa, Mikra, Pyrgos, Yliki) was investigated. The FAO AquaCrop (v.4) water driven model was used as a crop development simulation tool under eight climatic models (HadRM3, C4I, REMO MPI, ETHZ, CNRM, DMI-HIRHAM, KNMI, SMHI) based on IPPC’s A1B Climate Change scenario. The mean values of the models ensemble for temperature and precipitation were +1,8˚C until 2050 and +4 ˚C until the end of the century. The respective values for precipitation were -11% and -24%. The research was applied over three periods, 1961-1990, 2021-2050 and 2071-2099. AquaCrop validation for yield, biomass and canopy cover in respect to field data obtained from experiments carried out in Karditsa (Central Greece) from 2005 to 2007 was satisfactory on the account of Root Mean Square Error (0.17 to 0.49) and Index of Agreement (0.93 to 0.94). AquaCrop model was run using the Growing Degree Day mode in order to account better for the temperature variations. However, it gave erratic results for some specific climatic models (SMHI, KNMI, CNRM) in some years within the period 1961-1990. The predicted yields were highest in locations of western Greece (Agrinio, Arta, Pyrgos), whereas north-eastern Greece (Alexandroupolis) appeared to be less favoured by climate change. A tendency towards increasing yields by the end of the century was detected for the majority of the models. The efficiency of the eight models for yield predictions in the seven sites was assessed by means of a discriminant function analysis. On the account of their function coefficients over the seven sites, it was found that the models DMI and C4I explained consistently a great proportion of variation among the three time periods whereas the models ETHZ, SMHI and KNMI were more efficient in the periods 1961-1990, 2021-2050 and 2071-2099 respectively

    Ozone and temperature trends

    Get PDF
    An update of the extensive reviews of the state of knowledge of measured ozone trends published in the Report of the International Ozone Trends Panel is presented. The update contains a review of progress since these reports, including reviewing of the ozone records, in most cases through March 1991. Also included are some new, unpublished reanalyses of these records including a complete reevaluation of 29 stations located in the former Soviet Union. The major new advance in knowledge of the measured ozone trend is the existence of independently calibrated satellite data records from the Total Ozone Mapping Spectrometer (TOMS) and Stratospheric Aerosol and Gas Experiment (SAG) instruments. These confirm many of the findings, originally derived from the Dobson record, concerning northern mid-latitude changes in ozone. We now have results from several instruments, whereas the previously reported changes were dependent on the calibration of a single instrument. This update will compare the ozone records from many different instruments to determine whether or not they provide a consistent picture of the ozone change that has occurred in the atmosphere. The update also briefly considers the problem of stratospheric temperature change. As in previous reports, this problem received significantly less attention, and the report is not nearly as complete. This area needs more attention in the future

    The evolution of synoptic ozone anomalies during the European Arctic Stratospheric Ozone Experiment in winter 1991/1992

    Get PDF
    The evolution of ozone anomalies over the middle and high latitudes of the Northern Hemisphere during the winter 1991-1992 is studied in this work. The largest monthly mean negative deviations in the middle latitudes of the Northern Hemisphere were about 10 percent in November and December, and up to 20 percent in January, February, and March over Eurasian territories, and much smaller over the Canadian sector. At the end of January, on individual days, total ozone values of 190-210 D.U. were observed over Eastern Europe and European part of Russia, that is 40-45 percent below normal. On the whole, the 1991-1992 winter was one of the most anomalous over all the period of ozone observations. Finally, an attempt is made to quantify the contribution of transport in the ozone layer changes over Europe during this period

    Prediction of climate change impacts on cotton yields in greece under eight climatic models using the aquacrop crop simulation model [PRESENTATION]

    Get PDF
    The presentation includes the following sections: Introduction Previous research Materials and Method Climate scenario and models Crop simulation model Calibration and validation Future projections of some climatic parameters Cotton yield response to climate change Assessment of the used climatic models Comparison 2071-2100 and 1961-1990 Conclusions Acknowledgement

    Detecting volcanic sulfur dioxide plumes in the Northern Hemisphere using the Brewer spectrophotometer, other networks, and satellite observations

    Get PDF
    This paper demonstrates that SO 2 columnar amounts have significantly increased following the five largest volcanic eruptions of the past decade in the Northern Hemisphere. A strong positive signal was detected by all the existing networks either ground based (Brewer, EARLINET, AirBase) or from satellites (OMI, GOME-2). The study particularly examines the adequacy of the existing Brewer network to detect SO 2 plumes of volcanic origin in comparison to other networks and satellite platforms. The comparison with OMI and 45 GOME-2 SO 2 space-borne retrievals shows statistically significant agreement between the Brewer network data and the collocated satellite overpasses. It is shown that the Brewer instrument is capable of detecting significant columnar SO 2 increases following large volcanic eruptions, when SO 2 levels rise well above the instrumental noise of daily observations, estimated to be of the order of 2 DU. A model exercise from the MACC project shows that the large increases of SO 2 over Europe following the Bárðarbunga eruption in Iceland were not caused by local sources or ship emissions but are clearly linked to the eruption. We propose that by combining Brewer data with that from other networks and satellites, a useful tool aided by trajectory analyses and modeling could be created which can be used to forecast high SO 2 values both at ground level and in air flight corridors following future eruptions
    corecore