57 research outputs found

    How nonlocal damping reduces plasmon-enhanced fluorescence in ultranarrow gaps

    Get PDF
    The nonclassical modification of plasmon-assisted fluorescence enhancement is theoretically explored by placing two-level dipole emitters at the narrow gaps encountered in canonical plasmonic architectures, namely dimers and trimers of different metallic nanoparticles. Through detailed simulations, in comparison with appropriate analytical modelling, it is shown that within classical electrodynamics, and for the reduced separations explored here, fluorescence enhancement factors of the order of 10510^{5} can be achieved, with a divergent behaviour as the particle touching regime is approached. This remarkable prediction is mainly governed by the dramatic increase in excitation rate triggered by the corresponding field enhancement inside the gaps. Nevertheless, once nonclassical corrections are included, the amplification factors decrease by up to two orders of magnitude and a saturation regime for narrower gaps is reached. These nonclassical limitations are demonstrated by simulations based on the generalised nonlocal optical response theory, which accounts in an efficient way not only for nonlocal screening, but also for the enhanced Landau damping near the metal surface. A simple strategy to introduce nonlocal corrections to the analytic solutions is also proposed. It is therefore shown that the nonlocal optical response of the metal imposes more realistic, finite upper bounds to the enhancement feasible with ultrasmall plasmonic cavities, thus providing a theoretical description closer to state of the art experiments

    Robustness of the Rabi splitting under nonlocal corrections in plexcitonics

    Get PDF
    We explore theoretically how nonlocal corrections in the description of the metal affect the strong coupling between excitons and plasmons in typical examples where nonlocal effects are anticipated to be strong, namely small metallic nanoparticles, thin metallic nanoshells or dimers with narrow separations, either coated with or encapsulating an excitonic layer. Through detailed simulations based on the generalised nonlocal optical response theory, which simultaneously accounts both for modal shifts due to screening and for surface-enhanced Landau damping, we show that, contrary to expectations, the influence of nonlocality is rather limited, as in most occasions the width of the Rabi splitting remains largely unaffected and the two hybrid modes are well distinguishable. We discuss how this behaviour can be understood in view of the popular coupled-harmonic-oscillator model, while we also provide analytic solutions based on Mie theory to describe the hybrid modes in the case of matryoshka-like single nanoparticles. Our analysis provides an answer to a so far open question, that of the influence of nonlocality on strong coupling, and is expected to facilitate the design and study of plexcitonic architectures with ultrafine geometrical details

    Enhanced ponderomotive force in graphene due to interband resonance

    Get PDF
    We analyze intrinsic nonlinearities in two-dimensional polaritonic materials interacting with an optical wave. Focusing on the case of graphene, we show that the second-order nonlinear optical conductivity due to carrier density fluctuations associated with the excitation of a plasmon polariton is closely related to the ponderomotive force due to the oscillating optical field. This relation is first established through an elegant thermodynamic approach for a Drude-like plasma, in the frequency range where intraband scattering is the dominant contribution to conductivity. Subsequently, we extend our analysis to the interband regime, and show that for energies approximately half the Fermi energy, the intraband contribution to the ponderomotive force diverges. In practice, thermal broadening regularizes this divergence as one would expect, but even at room temperature typically leaves a strong ponderomotive enhancement. Finally, we study the impact of nonlocal corrections and find that nonlocality does not lead to further broadening (as one would expect in the case of Landau damping), but rather to a splitting of the ponderomotive interband resonance. Our analysis should prove useful to the open quest for exploiting nonlinearities in graphene and other two-dimensional polaritonic materials, through effects such as second harmonic generation and photon drag.Comment: 7 pages, 2 figures, 1 appendi

    Nonlocal quasinormal modes for arbitrarily shaped three-dimensional plasmonic resonators

    Get PDF
    Nonlocal effects have been shown to be responsible for a variety of non-trivial optical effects in small-size plasmonic nanoparticles, beyond classical electrodynamics. However, it is not clear whether optical mode descriptions can be applied to such extreme confinement regimes. Here, we present a powerful and intuitive quasinormal mode description of the nonlocal optical response for three-dimensional plasmonic nanoresonators. The nonlocal hydrodynamical model and a generalized nonlocal optical response model for plasmonic nanoresonators are used to construct an intuitive modal theory and to compare to the local Drude model response theory. Using the example of a gold nanorod, we show how an efficient quasinormal mode picture is able to accurately capture the blueshift of the resonances, the higher damping rates in plasmonic nanoresonators, and the modified spatial profile of the plasmon quasinormal modes, even at the single mode level. We exemplify the use of this theory by calculating the Purcell factors of single quantum emitters, the electron energy-loss spectroscopy spatial maps, as well as the Mollow triplet spectra of field-driven quantum dots with and without nonlocal effects for different size nanoresonators. Our nonlocal quasinormal mode theory offers a reliable and efficient technique to study both classical and quantum optical problems in nanoplasmonics

    Robustness of the far-field response of nonlocal plasmonic ensembles

    Get PDF
    Contrary to classical predictions, the optical response of few-nm plasmonic particles depends on particle size due to effects such as nonlocality and electron spill-out. Ensembles of such nanoparticles (NPs) are therefore expected to exhibit a nonclassical inhomogeneous spectral broadening due to size distribution. For a normal distribution of free-electron NPs, and within the simple nonlocal Hydrodynamic Drude Model (HDM), both the nonlocal blueshift and the plasmon linewidth are shown to be considerably affected by ensemble averaging. Size-variance effects tend however to conceal nonlocality to a lesser extent when the homogeneous size-dependent broadening of individual NPs is taken into account, either through a local size-dependent damping (SDD) model or through the Generalized Nonlocal Optical Response (GNOR) theory. The role of ensemble averaging is further explored in realistic distributions of noble-metal NPs, as encountered in experiments, while an analytical expression to evaluate the importance of inhomogeneous broadening through measurable quantities is developed. Our findings are independent of the specific nonclassical theory used, thus providing important insight into a large range of experiments on nanoscale and quantum plasmonics

    Nonlocal effects in atom-plasmon interactions

    Full text link
    Nonlocal and quantum mechanical phenomena in noble metal nanostructures become increasingly crucial when the relevant length scales in hybrid nanostructures reach the few-nanometer regime. In practice, such mesoscopic effects at metal-dielectric interfaces can be described using exemplary surface-response functions (SRFs) embodied by the Feibelman dd-parameters. Here we show that SRFs dramatically influence quantum electrodynamic phenomena -- such as the Purcell enhancement and Lamb shift -- for quantum emitters close to a diverse range of noble metal nanostructures interfacing different homogeneous media. Dielectric environments with higher permittivities are shown to increase the magnitude of SRFs calculated within the specular-reflection model. In parallel, the role of SRFs is enhanced in nanostructures characterized by large surface-to-volume ratios, such as thin planar metallic films or shells of core-shell nanoparticles. By investigating emitter quantum dynamics close to such plasmonic architectures, we show that decreasing the width of the metal region, or increasing the permittivity of the interfacing dielectric, leads to a significant change in the Purcell enhancement, Lamb shift, and visible far-field spontaneous emission spectrum, as an immediate consequence of SRFs. We anticipate that fitting the theoretically modelled spectra to experiments could allow for experimental determination of the dd-parameters.Comment: 9 pages, 5 figure
    • …
    corecore