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Abstract

We analyze intrinsic nonlinearities in two-dimensional (2D) polaritonic materials interacting with an
optical wave. Focusing on the case of graphene, we show that the second-order nonlinear optical
conductivity due to carrier density fluctuations associated with the excitation of a plasmon polariton is
closely related to the ponderomotive force due to the oscillating optical field. A recent study (Sun et al
2018 Proc. Natl Acad. Sci. USA 115 3285-9) derived this force in the hydrodynamic regime of a generic
Dirac fluid, and suggested that inclusion of interband transitions could have interesting implications.
Here we reproduce the Drude-like result in a more general fashion on the basis of thermodynamics,
which makes extension to other regimes straightforward. We find that for zero temperature a
diverging nonlinearity is found at the interband threshold. By including finite-temperature effects this
is regularized, but remains quite significant even at room temperature. Going further beyond, we
include nonlocal corrections as a second potential source of regularization, and find that they do not
lead to broadening (as one would usually expect e.g. due to Landau damping), but rather to a splitting
of the ponderomotive interband resonance, providing a very characteristic signature of nonlocality.
Our analysis should prove useful to the open quest for exploiting nonlinearities in graphene and other
2D polaritonic materials, through effects such as photon drag.

1. Introduction

The emergence of graphene [ 1, 2] and other two-dimensional (2D) materials [3, 4] at the forefront of research in
all areas of condensed matter physics, owing to their intriguing mechanical [5], thermal [6], electronic [7] and
optical properties [8], hasled to a plethora of suggested applications, many of which are already starting to see
the light of day. In photonics, in particular, where the possibility to excite and tailor highly confined polaritons
can have important implications [9, 10], 2D materials became very quickly prominent templates for enabling
and tailoring light—matter interactions [11-13]. In this context, the prospect of enhanced nonlinearities is always
among the first effects to be explored in a novel architecture, and 2D materials could not fail to attract their share
of attention [14—18].

In the long list of nonlinear optical effects, such as higher-harmonic generation, stimulated Raman and Rayleigh
scattering, electrooptic effects and multiphoton absorption [19], ponderomotive effects are particularly relevant to
plasmonics. Charged particles in inhomogeneous oscillating electromagnetic fields are known to be subject to a
ponderomotive force proportional to the gradient of the electric field (F o grad|E|?) that accelerates them towards
the field direction (see for example [20, 21] and reference therein). This has been exploited, for instance, for electron
acceleration with laser pulses [22], and controlling excitons [23] or plasmons [24], as well as inducing nonlinear
effects in them [25, 26]. With the advent of graphene as an exemplary plasmonic medium, it was only natural to
explore its capability to enhance nonlinearities [27-29] such as second harmonic generation (SHG), which is usually
symmetry-prohibited due to the high symmetry of the graphene lattice and therefore can only occur either at
interfaces or if the optical excitation breaks symmetry either by oblique incidence or via intensity inhomogeneities.
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In the former setting, a resonant enhancement at the interband threshold has been theoretically found recently [30]
while the latter has been connected to the ponderomotive force [15].

Recently, the second-order nonlinear ac conductivity of a generic Dirac fluid was connected to the
ponderomotive force through the hydrodynamic equations of motion [31]. As a directly available test bed, the
authors of [31] applied their analysis to graphene, focusing on SHG and photon drag. Since their analysis was
based on a hydrodynamic description, the authors restricted themselves to electromagnetic response at rather
low frequencies (to be precise, w < I, where I, is the electron—electron scattering rate), yet at finite
temperature T. Furthermore, they anticipated that at sufficiently high temperatures the interband contribution
to the conductivity could become important even for the nonlinearity in the hydrodynamic regime. In this
paper, we consider the effect of interband transitions directly excited by high-frequency optical waves at low to
moderate temperatures on the ponderomotive force. We start by deriving the connection between the ac
conductivity and the ponderomotive force with a different starting point, through a general and powerful
thermodynamic approach which, to the best of our knowledge, has not been presented before. By introducing
the second-order, room-temperature expression for the conductivity of graphene, we show that the resulting
ponderomotive force exhibits a resonance at an energy twice the Fermi energy, becoming infinite at zero
temperature. This resonant behavior survives for higher temperatures, and can lead to forces as large as one
order of magnitude stronger than in the intraband case, over a relatively wide energy range.

2. Preliminaries

We consider a graphene monolayer sandwiched between two dielectrics with relative permittivities £ and €.
Within a local response approximation, the electromagnetic properties of graphene are characterized by a
complex sheet conductance o(w). It has two contributions (¢ = o, + 0,): firstlya Drude model
o(w) 126k
ok Alw+ ]

(¢Y)

due to intraband scattering of free carriers. It is characterized by an Ohmic damping y(w) due to the scattering of
carriers predominantly off lattice impurities at low temperatures and phonons at higher temperatures. The
frequency dependence is generally required in order to ensure that the local electron density is conserved [32]. In
the context of our work, this is of no consequence and for simplicity, we suppress this in the remainder. The
second contribution describes the effect of interband transitions if the photon energy fiw exceeds twice the Fermi
energy &% (relative to the undoped state). At zero temperature. it takes the form:

]. 2

U(ZTZO) (w) L fw — 26%
Here, /i is Planck’s constant, ©(x) is the Heaviside function, and ox = ¢*/h ~ 3.87 x 10 °Sis the inverse of the
von-Klitzing constant, with e being the electron charge [11].

The full optical conductivity of graphene at finite temperature has been calculated in [33, 34]

[@(ﬁw — 26p) + iln
7r

aT>0(w) 2% s fw + 26
= + —|tanh ————
0K h(w + 17y) 4 4kg T
_ 9 ; DY A 2
+ tanh 7w Zéap iln (fl/bd 26(7]:) + (ZkB T) , (3)
4kg T w (/w + 26%)?

where kg is the Boltzmann constant and T the temperature. This expression can be further corrected through
appropriate multiplicative factors proportional to the square of the energy over the hopping parameter of the
tight-binding description of graphene [33]. However, this correction is usually of minor importance [27, 34],
and our calculations showed that it can be safely disregarded here as well.

Graphene is best known and has received most of its attention because of its linear energy-momentum
relation at the undoped Fermi energy [11]. This implies that the common expression mg = %#2[02& /Ok?]~! for
the electron effective mass is ill-defined for its quasiparticles, which in fact have vanishing ‘rest mass’. Instead,
the appropriate expression for the effective mass is the dynamic mass of a relativistic massless particle, where the
energy-independent Fermi velocity v takes the role of the speed of light [1]:

& = megr VFZ. 4)

In further analogy to relativistic massless particles, the Fermi wave number gy, is related to the Fermi energy via
the linear relationship
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Finally, the Fermi wave number is directly connected to the density 7 of free carriers:

qp = 7. ©

Here, we study how a plasmon polariton and an optical wave interact in a graphene sheet due to the intrinsic
nonlinearity of graphene. To this end, we introduce a separation of scales. The optical wave is assumed to
oscillate at an angular frequency w, whereas the polariton oscillates at an angular frequency 2 < w. Asaresult,
the optical parameters can be assumed to be modified by the polariton, but remain quasi-stationary as far as the
optical wave is concerned. This separation of frequency scales is intrinsic to the notion of the ponderomotive
force.

Within this work, we employ a thermodynamic argument based on the free enthalpy % to obtain an
expression for the ponderomotive force. It requires the electron distribution to remain near the thermal
equilibrium. This assumption is compatible with the assumption of a very slow, long-wavelength polariton,
which quasi-adibatically modifies the electronic system. As for the optical excitation, we note that it certainly
changes the occupation of the electron levels that are responsible for the permittivity at this optical frequency. In
the case of interband transitions for example, the non-thermal distribution features excess carriers in the
destination states [35]. This means that an electron system far away from thermal equilibrium is bound to
exhibit a quasi-instantaneous Kerr nonlinearity (e.g. saturation in the example of interband transitions)
assuming the carrier density is kept constant. But assuming linear response in equation (3), we have implicitly
assumed a quasi-thermal electron distribution, which justifies our approach.

3. Intraband contribution to nonlinear response

First, we derive the ponderomotive force ignoring interband transitions. The basic idea is that a plasmon
polariton is in essence a fluctuation in the carrier density, and therefore accompanied by a spatial modulation of
thelocal Fermilevel &;. The notion of alocal Fermilevel is acceptable as long as the polaritonic wavelength is
large enough to ensure the electron system to reach alocal equilibrium, i.e. whenever local response theory
applies. This is the case if it is large compared to the electronic mean free path length. As a rough estimate, the
ratio of damping constant and Fermi velocity point at the order of 100 nm or shorter. It also implies the
assumption that the polariton does not cause too much ‘unrest’ in the electron system, but rather moves carriers
around in a quasi-adiabatic way while overall maintaining the general shape of the Fermi distribution. This can
be expected whenever the polariton experiences low loss, as any qualitative distortion of the Fermi distribution
really means dissipation. The Fermi level in turn controls the intraband conductance of graphene through
equation (1) and is linked to the total carrier density through equation (6). This means that we can estimate the
change to the optical response simply through the chain rule:

9 _ 0006 _  ievi o @
On  0&r On 27 (w + iy)J7mn 2n’

We now aim to gain a better understanding of the expression equation (7) for the polariton-induced change
to the optical properties. To this end, we recall the definition of a permittivity from the total free enthalpy 4 of a
solid [20]:

1 0*Y
ler)ij = ——  ———F )
g0 (OE)(OE))
Using the relationship o = —iweye, between the complex conductance and the permittivity of a material, we
can adapt equation (8) to the case of an isotropic sheet conductance:
2g
— i’ ©)
8|EH|

where ]:jH is the tangential field at the position of the sheet. The fact that EH is continuous across the sheet

motivates why E was chosen as the independent variable® in equation (8).
Using equation (9), we can characterize the intrinsic second-order nonlinearity of graphene by a parameter
Wia:

4. . . . . . Ca. . .. . =
Strictly speaking, our thermodynamic potential % is not the free enthalpy, which is defined with the electric induction D as the
independent variable and connected to % via a Legendre transformation [20]. This detail is of no concern for our argument.
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2
w= 2|09 |_ a_ (10)
On| O\ 2inw

Under the assumption that this nonlinear process in itself is reversible, we can interchange the order of
derivatives and also find
2 G
0 [ 0 ] (11

T oERLon

This time, the term in brackets is the definition of a local chemical potential, so equation (11) describes a
correction to the chemical potential caused by a change in the intensity of a quickly oscillating electric field. This
is of course just a Maxwell relation and intimately related to the Manley—Rowe relations known from nonlinear
optics and electrical engineering [19]. Even though it sounds similar to our starting point (change of the Fermi
level due to a propagating polariton), it describes in fact the inverse process. Again, it should be stressed that this
conclusion requires the nonlinear interaction to be reversible, i. e.not to create any entropy, not to be dissipative.
Therefore, we can expect this to hold exactly in the limit vy = 0 and gradually be broken as y assumes a finite
value.

From equation (7), we can see that W does not depend on the electric field, so we can derive from
equation (11) an explicit expression for the change in chemical potential

0% -
Ap =2 = WIEP. (12)
on

This exerts a force on each particle that is proportional to the in-plane gradient:

01

F = grad (Ap) = gradnlﬁﬂlz, (13)

2inw
where grad, represents the 2D gradient operator in the sheet plane. Finally, in the limit of vanishing loss (y — 0)
and using equations (4)—(6)), we find:

= e? =

F = ﬁgrad”wmz. (14)

Meff W

This is the expression for the ponderomotive force in a 2D plasma composed of particles with effective mass 7.
Therefore, we have established that the intrinsic nonlinear change of the optical conductance due to a plasmon
polariton in a graphene sheet is the complementary process to the ponderomotive force through which
variations in the intensity of an optical field can drive polaritons.

A similar expression was recently derived in [31], albeit with a different starting point and analysis, and
restricted to the intraband scattering region. Nevertheless, the authors of [31] did stress the necessity to explore
interband corrections, already proven to be capable of enhancing third-order nonlinearities [36] or contributing
to difference frequency generation [37], and this is what we shall do in the next section.

4, Interband contribution

The connection we established in the previous section now allows us to find the generalized ponderomotive
force in situations where the electron system can no longer be described as a Drude plasma. This is for example
the case in the regime 2/av > &, where the electromagnetic response is significantly modified by interband
transitions. Following our previous analysis, we can express the correction to the ponderomotive force in terms
of the density derivative of the interband conductance, provided this nonlinear coefficient describes a reversible
process. For optical frequencies w = 26/ /7 , we find:
(T=0)
B = L L gr:11dH|E'”|2 (15)
iw on
—e?

T 2meglw® — 6/ )]

grad“lﬁ“lz. (16)

This expression is purely real-valued, i.e. the variation in the Fermi level does not lead to a change in the
absorptivity of the material unless the optical frequency is chosen such that /v — 26 changes sign. Only in this
case, the nonlinearity features a substantial imaginary part, i.e. becomes dissipative. Otherwise, equation (16)
constitutes a real ponderomotive force. Due to the resonant nature of equation (16), this force diverges as the
optical frequency approaches the interband threshold from either side, especially from the low-loss side. In
theory, the ponderomotive forces per unit of optical intensity can be made arbitrarily large by moving towards
the point w = 26/ / . This divergence is of course just an artifact of assuming the step-like Fermi distribution at
zero temperature and will be regularized for any T = 0.

4
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Figure 1. Dependence (overview in panel (a), close-up of the interband resonance in panel (b) of the frequency-part P(s) of the finite-
temperature ponderomotive force as defined in equation (19) on the normalized photon energy s = /i /& for the annotated values
of the normalized temperature § = kg T/ &%. For 6 = 893 meV, the temperatures correspond to 1, 10, 100, and 1000 K, respectively.
The red dashed line indicates the pure Drude-like ponderomotive force without interband contributions for comparison. It should be
pointed out that this logarithmic plot does not reflect the sign of the ponderomotive force, which undergoes a change from negative to
positive across the interband resonance.

Indeed, starting from equation (3), we find that the real pole turns into a Lorentzian imaginary part:

1000w [ fwd 26 w26 0 i(/w — 267) a”
ok 0  8kyT 4ky T 4ky T fw + 26 (fw — 26¢)* + (2ksT)?

Due to the more broadband loss of interband transitions at finite temperature, this derivative is non-real
everywhere, so strictly speaking, it does not provide a real ponderomotive force. However, at least in parameter
ranges where the real part of equation (17) is small, we can regard inserting its imaginary part in equation (15) to

be a good approximation:
2500 — /e [ Jiw — 26¢

(fiw — 26r)* + (kg T)?

F ] gradulﬁulz. (18)

1
- 4wm g fw + 26k

Itis natural to relate both the photon energy /iw and temperature T to the Fermi energy in order to obtain a more
universal expression. Introducing the normalized quantities s = /w/& and 0 = kg T / &, we find for the total
ponderomotive force:

=F(s)/2

~(T>0) 71%e? —» 1
Fo = ———grad|E|* - - -[2 -
fOF S (

(19)

Ameg & s—2)2+40> s+2

=P(s)

s(s —2) s ]

where the factor outside the bracket turns out to be the Drude-like intraband ponderomotive force F, as
indicated. The dimensionless function P(s) summarizes the frequency-dependence and describes the
ponderomotive force normalized to all appearing fundamental constants and the electric field gradient. In
figure 1, we show P(s) for a number of normalized temperatures 6.

5.Nonlocal corrections

For completeness, we finally present the main effect of nonlocality to the ponderomotive force at finite
temperature. Since the ponderomotive force describes a nonlinearity, terms like ‘nonlocality’ or
‘inhomogeneity’ require clarification to avoid confusion. We consider the dependence of the ponderomotive
force on the optical wave vector IQH projected to the sheet plane. In analogy to the scale separation in time
mentioned in the preliminaries, we assume that the length scale of the charge distribution (i.e. the wavelength of
the polariton) is large compared to IQH. It should be noted that this is not necessarily as good an assumption as the
time-scale separation, because of the high confinement of the plasmon polaritons.

To the best of our knowledge, there is no model for the nonlocal effect in the intraband (Drude-like)
conductance that is both applicable beyond the interband threshold (s > 2) and conducive for the style of
analytical calculations we present in this paper. Therefore, we restrict ourselves to the effect of nonlocality on the
interband case, which is anyway potentially of greater interest, because of its resonant nature.




10P Publishing

NewJ. Phys. 21 (2019) 073046 CWolffetal
1000:‘,.‘..‘..‘.“...,....,.: RN RRRRERRRRRRRRRRRRRRERE:
- a) ©=0.001 1 E b) 8=001 ]
i — =~ =000 1
100 I,. — $=0.01 3
= — ¢=003 E
- =006 .
i — $=0.10 ]

L

LiLil

0.1

norm. nonlocal correction |P (s, ¢)|
=)

ol
T
|

0_011_11”..\”” ' I I dow by ey b by

1.8 1.9 2 21 22 1.8 1.9 2 2.1 22
norm. photon energy s norm. photon energy s

Figure 2. Effect of nonlocality on the interband contribution to the ponderomotive force (equation (5)) at two normalized
temperatures (panel (a): = 0.001; panel (b): # = 0.01) and for several values of k| corresponding to different angles of incidence
¢ = k) /kg of the driving light field.

The origin of the nonlocal interband effect is the conservation of momentum, where we assume a large
graphene sheet and homogeneous optical illumination (spatially slowly varying envelope): a carrier from the
lower branch of the dispersion relation with an initial wave vector on the circle |g, | = g, is not lifted to the same
wave vector on the upper branch, but to a final wave vector on the circle that is shifted by the optical wave vector
l_c]‘: G5, — Izul = g,. Asaresult, the effective interband transition energy is no longer independent of the exact

wave number on the initial wave number circle, but offset by up to £vg kH' Since all source states with the same

energy form a circle in k -space, we find for the nonlocally corrected conductance:
1 0
oy (w, k) = — f da oy (w + vekjcos a), (20)
™YY7

where the conductivity under the integral is the local conductivity and only the modulus kj of the optical wave
vector matters because of the cylindrical symmetry of the Dirac cone. This smearing effect carries through the
entire derivation and does not interact with the partial derivatives leading to the ponderomotive force. Hence,
we find for the interband ponderomotive force including nonlocal corrections:

_ 1 F k
Fr(w, k) = lf dz M) 1)
Tl 1 — z?

with z = cos a. We only study the seemingly more complex case of finite temperature, because at T = 0, there is
apole in the integration interval, which means that the zero temperature case must be obtained as the limit

T — 0 of the finite temperature expression. As before, we choose to separate the normalized frequency
dependence from constants that clutter the notation by generalizing the inter-band contribution P,(s) to the
normalized response function P(s):

Py(s + ¢z2)

= (22)

1
P2<s,¢):%j:1dz

1—z

where ¢ = k| /kg is the normalized in-plane optical wave number and therefore simultaneously parameterizes
the optical phase velocity and angle of incidence. As far as we can tell, equation (22) has no closed solution in
terms of fundamental functions, but under the assumptions s ~ 2 and ¢ < 1 (¢ > vg), we can approximate it
(see appendix for details):

Py(s, ¢) = 2I(s, ¢, =2), +1(s, ¢, 2 + 2i0) + 1(s, ¢, 2 — 2i6) (23)
with
(2s —A)sgn R{s —Aph 1

2525 — A)? — ¢? 257

I(s, ¢, A) =~

249
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where sgn (R{z}) = x/|x|forz = x + iy. We find that this approximate expression matches a direct numerical
integration of equation (22) very well within in the range 1.5 < s < 2.5and ¢ < 0.1, which corresponds to an
optical wavenumber ten times higher than in vacuum.

In figure 2, we show equation (24) for two normalized temperatures and a number of normalized in-plane
wave numbers. We find that the effect of the interband nonlocality on the ponderomotive force differs
significantly from most nonlocal corrections found in plasmonics. Usually, nonlocality leads to spectral shifts as
well as additional damping and smearing of spectral features e.g. due to Landau damping [38]. Instead, we find a
splitting of the ponderomotive resonance in the regime ¢ > ¢ correspondingto k| > kg T /7. Below this
threshold, the splitting exists in principle, but is hidden by thermal broadening.

6. Conclusion

In summary, we derived an expression for the ponderomotive force arising from the optical excitation of a
polariton in a 2D material, focusing our analysis on the case of graphene. Starting from a thermodynamic
approach that relates the material permittivity to the total free enthalpy, we obtained a general relation between
the ponderomotive force and the 2D sheet conductivity. By introducing into this the appropriate expression for
the interband graphene conductivity, we showed that the resulting ponderomotive force exhibits a pole, which
leads to its divergence at zero temperature. At higher temperatures, this divergence is gradually smoothed, but
there is always an energy region around half the Fermi energy where the interband contribution is larger than the
corresponding Drude part. This can play an important role when exploring second-order intrinsic
nonlinearities in polaritonic materials, as for example in the recent study of stimulated plasmon polariton
scattering [39]. Finally, we explored the impact of nonlocal corrections to the interband part assuming a spatially
slowly varying optical envelope, and found a very characteristic type of resonance splitting. Strikingly, this is very
distinct from the simple broadening and minuscule resonance shifts, which are the most common type of
nonlocal correction in linear plasmonics [40—42], and therefore a very clear signature for nonlocal response in
plasmonics.
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Appendix. Analytic approximation to the nonlocal correction

Here, we find an approximate solution to the integral

1 ! 1 1 s+ ¢z —2 1
Py(s, ¢) = — d A.
25 ) 7rf_1 Z1/1_22$—|—¢Z[(S+¢Z—2)2+492+S+¢Z+2:| @&.1)

1 1 1 1 1 1 2
=— dz . — + — + . (A.2)
2w J-1 1—22 s+ ¢z|s+¢dz—2+4+20 s+¢z—2—260 s+ ¢z+2

This partial fraction decomposition reduces the problem to three integrals of the same form

1 1 1 1 1
I(s, ,A:—f dz : . .
© ¢ 4) 21 J-1 J1—2z2 s+¢z s+oz—A

(A.3)

Next, we restrict ourselves to the neighborhood of the inter-band resonance, i.e. s &~ 2 and we assume ¢ < 1.
This means we may approximate (s + ¢2) ' x5 (s — ¢2)

1 1 1 s — ¢z
I(s, ¢, A) ~ d . A4
& 4) 271'52«]:1 ‘ J1—2z2 ¢z+s—A a4
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1 fl 1 2s — A
= dz -1 A5
2ms? Ja 1/1_22[¢Z+S—A ] (&.5)
—1 2s — A ! 1
- + I f dZ - —
2s* 2mgs® o1 (z 4 @)1 — 2
witha = (s — A)/¢. Thisis a standard integral and evaluates to 7/\a®> — 1.The expression is ambiguous as to

which branch of the root function is to be used. This is solved by identifying the integration result at ¢ = 0 with
the local expression P,(s). In this way, we arrive at equation (5).

(A.6)
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