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Robustness of the Rabi splitting under nonlocal corrections in plexcitonics

C. Tserkezis,1 Martijn Wubs,1, 2 and N. Asger Mortensen3, 2

1Department of Photonics Engineering, Technical University of Denmark,
Ørsteds Plads 343, DK-2800 Kgs. Lyngby, Denmark

2Center for Nanostructured Graphene, Technical University of Denmark,
Ørsteds Plads 343, DK-2800 Kgs. Lyngby, Denmark

3Center for Nano Optics, University of Southern Denmark,
Campusvej 55, DK-5230 Odense M, Denmark

We explore theoretically how nonlocal corrections in the description of the metal affect the strong
coupling between excitons and plasmons in typical examples where nonlocal effects are anticipated
to be strong, namely small metallic nanoparticles, thin metallic nanoshells or dimers with narrow
separations, either coated with or encapsulating an excitonic layer. Through detailed simulations
based on the generalised nonlocal optical response theory, which simultaneously accounts both for
modal shifts due to screening and for surface-enhanced Landau damping, we show that, contrary
to expectations, the influence of nonlocality is rather limited, as in most occasions the width of the
Rabi splitting remains largely unaffected and the two hybrid modes are well distinguishable. We
discuss how this behaviour can be understood in view of the popular coupled-harmonic-oscillator
model, while we also provide analytic solutions based on Mie theory to describe the hybrid modes
in the case of matryoshka-like single nanoparticles. Our analysis provides an answer to a so far open
question, that of the influence of nonlocality on strong coupling, and is expected to facilitate the
design and study of plexcitonic architectures with ultrafine geometrical details.

I. INTRODUCTION

The strong coupling of excitons in organic molecules
and quantum dots with surface plasmons has been at-
tracting increasing interest in recent years [1, 2]. Both
propagating surface plasmons in thin metallic films [3–
9] or localised surface plasmons in metallic nanoparticles
[10–16] have been explored, not only from the point of
view of theory, for which it constitutes a new class of
light-matter interactions characterised by unique, hybrid
optical modes [17–21], but also because of its technolog-
ical prospects in quantum optics and the emerging field
of quantum plasmonics [22, 23] as well as the design of
novel optical components [24–28].

Originally, strong coupling effects were studied for
atomic and solid-state systems inside optical or photonic
cavities [29–32]. J-aggregates of organic molecules are
however increasingly more frequently preferred, as they
are characterised by large dipole moments and narrow
transition lines [11, 33]. At the same time, plasmonic ar-
chitectures are excellent templates as cavities for the ex-
perimental realisation of hyprid exciton-photon systems,
because they provide nanoscale confinement and small
modal volumes [34], thus permitting even single-molecule
strong coupling at room temperature [35, 36]. The in-
teraction of excitons with plasmons is usually traced
through the Rabi splitting in optical spectra [4, 11], but
recent elaborate experiments showed that it is also pos-
sible to observe the coherent energy exchange between
the optical states of the two components in real time
through the corresponding Rabi oscillations[37–39]. Tai-
loring the plasmonic environment is gradually departing
from the regime of single nanoparticles [12, 13, 40, 41],
and dimers [42–48] or nanoparticle arrays [49–53] are ex-
ploited to benefit from their stronger field confinement

and enhancement. A similar coupling has also been ob-
served for the interaction of emitters with the phononic
modes of SiC antennae [54], while engineering the elec-
tromagnetic vacuum through evanescent plasmon modes
was recently proposed as a promising route towards in-
creased light-matter interactions [55].

As novel plasmonic architectures are explored in the
quest for stronger, possibly even ultrastrong coupling
[56–58], reducing characteristic lengths such as nanopar-
ticle sizes and/or separations is a natural step that goes
hand-in-hand with advances in nanofabrication. In such
systems however, the excitation of a richness of hy-
brid optical modes characterised by large field intensities
[59, 60] is accompanied by the increased influence of non-
classical effects that require a description beyond classi-
cal electrodynamics [61]. Nonlocal screening due to the
spatial dispersion of induced charges [62–65], enhanced
Landau damping near the metal surface [66–68], elec-
tron spill-out [69–74] and quantum tunnelling [75–77] are
different manifestations of the quantum-mechanical na-
ture of plasmonic nanostructures in the few-nm regime,
which need to be considered for an accurate evaluation
of the emitter-plasmon coupling. For instance, nonlo-
cal effects strongly affect spontaneous emission rates for
quantum emitters in plasmonic environments [78], and
lead to reduced near-fields as compared to the common
local-response approximation (LRA) [79]. Fluorescence
of molecules in the vicinity of single metallic nanoparti-
cles [80] or inside plasmonic cavities [81] is also affected
by a combination of nonlocal induced-charge screening
and surface-enhanced Landau damping. In the context
of strong coupling, Marinica et al. have reported quench-
ing of the plexcitonic strength in dimers, attributed to
quantum tunnelling [82]. Even before entering the tun-
nelling regime, one anticipates that experimentally ob-
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served nonlocal modal shifts and broadening [60, 83, 84]
can manifest themselves as deviations in the dispersion
diagram and changes in the width of the Rabi splitting in
the optical spectra. Nevertheless, related studies are still
missing and these expectations are yet to be confirmed.
In the recent review by Törmä and Barnes [1], one

section was devoted on how smaller dimensions of the
plasmon-supporting structures become increasingly more
important. In particular, it was anticipated that one con-
sequence of nonlocal effects that is of great interest in the

context of strong coupling is that of a reduction in the

field enhancement that can be achieved when light is con-

fined to truly nm dimensions. Motivated by this discus-
sion, and also by our recent studies of single emitters in
plasmonic environments [80, 81], we explore here the in-
fluence of nonlocality on plexcitonics through theoretical
calculations based on the generalised nonlocal optical re-
sponse (GNOR) theory [85]. GNOR has proven particu-
larly efficient in recent years in simultaneously describing
both nonlocal screening and Landau damping through a
relatively simple correction of the wave equation that is
straightforward to implement to any plasmonic geome-
try model [86]. Here we take advantage of its flexibility
to describe the optical response of typical plexcitonic ar-
chitectures: metallic nanoshells either coated by an exci-
tonic layer or containing it as nanoparticle core, dimers
of such nanoshells and homogeneous nanosphere dimers
encapsulated in an excitonic matrix. In all situations it is
shown that, while nonlocal modal shifts introduce a de-
tuning for fixed geometrical details, the width of the Rabi
splitting remains in practice unaffected if one follows the
more practical approach of modifying nanoparticle sizes
and/or separations so as to tune the plasmon mode to the
exciton energy. Broadening of the plasmon modes due to
Landau damping is also shown to be weak enough, so as
to secure that the two hybrid modes remain distinguish-
able, and linewidth-based criteria for strong coupling are
satisfied. This somehow unexpected result is interpreted
in view of a popular coupled-harmonic-oscillator (CHO)
model and the strength of the coupling as related to the
modal volume, while analytic solutions for the hybrid
modes are obtained based on Mie theory. Our analysis
relaxes concerns about nonlocal effects in the coupling
of plasmons with excitons, and provides additional flexi-
bility to the experimental realisation of novel plexcitonic
architectures with sizes in the few-nm regime.

II. RESULTS AND DISCUSSION

In order to facilitate a strong influence of nonlocality,
we consider throughout this paper small nanoparticles
with radii that do not exceed 20 nm, and thin metallic
shells of 1–2nm width. While such thin nanoshells are
still experimentally challenging, successful steps towards
this direction have been presented recently [87]. The
choice of nanoshells over homogeneous metallic spheres
serves a dual purpose. On the one hand, thin metallic

layers ensure the reduced lengths required for a strong
nonlocal optical response, even though the far-field foot-
print of nonlocality can often prove negligible [88, 89].
On the other hand, and more importantly, modifying the
shell thickness provides the required plasmon tuning [90]
to match the exciton energy and observe the anticrossing
of the two hybrid modes in dispersion diagrams [12, 58].
As discussed by Törmä and Barnes [1], metals with low
loss are beneficial for strong-coupling applications, be-
cause the plasmon modes should have linewidths compa-
rable to those of the excitonic material. In our case, low
intrinsic loss also ensures that the role of Landau damp-
ing will be better illustrated. For this reason, silver is
adopted as the metallic material throughout the paper.

As a first example of a nonlocal plexcitonic system, we
study a silver nanoshell of total radius R = 5nm in air,
encapsulating an organic-dye core of variable radius R1,
so that the metal thickness is W = R −R1, as shown in
the schematics of Fig. 1. The dye is modelled as a homo-
geneous excitonic layer with a Drude–Lorentz dielectric
function as described in Sec. IV, with its transition en-
ergy at h̄ωexc = 2.7 eV. The extinction (σext) spectrum
for a homogeneous sphere of radius R = 5nm described
by such a permittivity is shown in Fig. 1(a) by the black
line (magnified in the inset), and is indeed characterised
by a weak resonance at 2.7 eV. With a red (blue) dashed
line is depicted the corresponding LRA (GNOR) extinc-
tion spectrum for a hollow silver nanoshell (in the ab-
sence of the excitonic core) with R = 5nm, and W =
0.94nm, the thickness for which the symmetric particle-
like plasmon mode of the nanoshell [91] matches h̄ωexc in
the local description. As expected, when nonlocal effects
are taken into account through GNOR, for the same geo-
metrical parameters the plasmon mode experiences both
a blueshift, of about 0.023 eV, and additional broadening,
so that the full width at half maximum of the resonance
increases from 0.05 eV to 0.067 eV. Once the dye core is
included, its excitonic mode interacts with the localised
surface plasmon, and two hybrid modes are formed, as
shown by solid red and blue lines in Fig. 1(a), with a Rabi
splitting of energy h̄ΩR = 0.156 eV. While both peaks ex-
perience a nonlocal blueshift, its strength is practically
the same, so that h̄ΩR remains unaffected. However, one
should be cautious and not draw conclusions just from
Fig. 1(a), since the spectra have been calculated for a
shell thickness for which the plasmon mode is detuned
from h̄ωexc in the nonlocal description.

In order to get a better visualisation of the strong cou-
pling of Fig. 1(a), we plot in Fig. 1(b) the dispersion
diagram of the two modes as a function of the plasmon
energy h̄ωp, calculated by modifying the shell thickness
and obtaining the resonance peak for hollow nanoshells.
We then repeat the calculation in the presence of the dye,
and obtain the frequencies of the hybrid modes, ω±, from
the extinction spectra. Plotting the energies of the two
hybrid modes as a function of h̄ωp leads to dispersion
lines that are practically indistinguishable for the LRA
(red lines) and GNOR (blue lines) models. The same
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FIG. 1: Strong coupling in the excitonic core-plasmonic shell
nanoparticle shown in the schematics on the right. (a) Nor-
malised extinction cross section (σext) spectra in the absence
(dashed lines) or presence (solid lines) of the excitonic core
characterised by a transition at energy h̄ωexc = 2.7 eV, for
a silver nanoshell with radius R = 5nm and shell thickness
W = 0.94 nm (for which the plasmon energy h̄ωp matches ex-
actly h̄ωexc. Red and blue lines represent LRA and GNOR
results, respectively. The black line (magnified in the inset)
shows the corresponding spectrum for a homogeneous exci-
tonic sphere with R = 5nm. (b) Extinction peaks of the two
hybrid modes (ω±) as a function of h̄ωp within the LRA (red
lines) and GNOR (blue lines) models. The plasmon energy
is modified by changing the nanoshell thickness W , and is
calculated through the extinction peaks in the absence of an
excitonic core for each model. Dispersion diagrams of the
two modes directly as a function of W are shown in the inset.
Red solid dots and open triangles denote the approximate so-
lutions based on the CHO model and Mie-theory expansion,
respectively, within LRA. Full extinction contour plots as a
function of h̄ωp calculated with LRA and GNOR are shown
in (c) and (d) respectively, sharing a common colour scale.
White dashed lines indicate the uncoupled exciton and plas-
mon energies.

dispersion diagram is plotted in the inset of Figure 1b
as a function of shell thickness. It is straightforward to
see that the GNOR dispersion lines are just horizontally
shifted with respect to the corresponding LRA ones, as
the nonlocal blueshift makes thicker shells necessary to
achieve the same plasmon energy.

Together with the numerical results, in Fig. 1(b) we
also present the solutions obtained through two different
analytic approaches: solid red circles represent the hybrid
mode frequencies obtained from the CHO model, while
open triangles correspond to analytic solutions based on
Mie theory – both are in excellent agreement with the full
simulations. Due to its simplicity, the oscillator model is
frequently adopted in literature to describe the modes
in strongly-coupled plexcitonic geometries [7, 42, 45]. In
the general case, the (complex) energies of the two hybrid

modes are given by [1, 16]

h̄ω± =
h̄ωp + h̄ωexc

2
− i

h̄γexc
4

− i
h̄γp
4

±1

2

√

(h̄ΩR)
2
+

[

(h̄ωp − h̄ωexc) + i

(

h̄γexc
2

− h̄γp
2

)]2

,

(1)

where γp and γexc are the uncoupled plasmon and exciton
damping rates, respectively. The frequency of the Rabi
splitting is usually obtained by the simulated or exper-
imental spectra at the crossing point, and it is directly
related to the coupling strength g through h̄ΩR = 2g.
When absorptive losses are low, and the plasmon and
exciton linewidths are similar, Eq. (1) simplifies to [92]

h̄ω± =
h̄ωp + h̄ωexc

2
± 1

2

√

(h̄ΩR)
2 + (h̄ωp − h̄ωexc)

2 .

(2)
We note here that, since the width of the Rabi splitting
is itself often obtained from the dispersion diagrams, in-
stead of more elaborate, quantum-mechanical analyses
based on the coupling strength, it is not that surprising
that Eq. (2) reproduces the same data so well. On the
other hand, for spherical particles one can obtain the po-
sition of the modes through the poles of the scattering
matrix in the Mie solution [81], an approach which is
the nanoparticle equivalent to introducing the metal and
excitonic dielectric functions into the surface plasmon po-
lariton dispersion relation [1]. This was done for example
by Fofang et al. [12] in the simplified case where many of
the (background) dielectric constants involved could be
taken equal to unity. To generalise this, the dipolar Mie
eigenfrequencies of a core-shell particle can be obtained
through [81]

ε2 + 2ε+

(

R1

R

)3
2 (ε1 − ε2) (ε2 − ε)

2ε2 + ℓε1
= 0 , (3)

where ε1 is the dielectric function of the core, ε2 the
corresponding one of the shell, and ε describes the envi-
ronment, as shown in the schematics of Fig. 1. Using the
Drude–Lorentz model discussed in the Methods section
for ε1, and a simple Drude model for ε2 (with plasma fre-
quency equal to 9 eV and background dielectric constant
equal to 3.65 to model silver), and disregarding absorp-
tive losses in both materials as we are interested in the
real resonance frequencies, leads to a relation in which
ω is raised to the power of 6, and therefore six eigenfre-
quencies are obtained. Three of them are negative and
have no physical meaning; the other three are the two hy-
brid plasmon-exciton modes, ω+ and ω−, shown by open
triangles in Fig. 1(b), and the antisymmetric, cavity-like
plasmon mode of the nanoshell [91], which is at much
higher frequencies and does not interact with the exci-
ton.
Apart from the resonance frequency of the two hybrid

modes and the width of the Rabi splitting, of partic-
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ular interest is also the linewidth of the initial uncou-
pled modes, and that of the hybrid ones. In the descrip-
tion of mechanical harmonic oscillators, the condition for
reaching the strong coupling regime is usually defined
as ΩR > ωmode, where ωmode is the largest frequency
between the two of the original uncoupled modes. In
other contexts, this condition describes the ultrastrong
coupling regime. In plasmonics these requirements are
usually relaxed, and strong coupling is defined in a more
pragmatic way, through [1]

h̄ΩR >

√

(h̄γp)
2

2
+

(h̄γexc)
2

2
. (4)

This is the condition required for the Rabi splitting to
be observable in the spectra, and it indeed holds true in
the example studied in Fig. 1, as can be verified by intro-
ducing the linewidths of the uncoupled modes discussed
above into Eq (4). To better illustrate the broadening
and damping of the modes predicted by nonlocal theo-
ries, in Figs. 1(c)-(d) we show contour plots of extinction
versus energy, obtained with the LRA and GNOR model,
respectively. For all shell thicknesses (and therefore the
corresponding plasmon energies) studied here, the two
hybrid modes are clearly distinguishable, and the relaxed
strong-coupling condition of Eq. (4) holds. We have re-
peated the same analysis for several nanoparticle sizes
and radius–thickness combinations, even reproducing re-
sults in the ultra-strong coupling regime [58], without
observing qualitative or quantitative differences from the
above discussion.
As a second example, it is natural to explore the in-

verse topology, where the excitonic layer grows around a
metallic nanoshell, a geometry which is easier to achieve
experimentally and has been shown to be preferable for
obtaining large Rabi splittings and even entering the ul-
trastrong coupling regime [58]. In Fig. 2 we replace the
excitonic core of the nanoshell of Fig. 1 with a SiO2 one
(described by a dielectric constant ε1 = 2.13). We as-
sume a constant nanoshell radius R2 = 5nm, covered by
an external excitonic layer of thickness R − R2 =5nm
and exciton energy 2.7 eV as previously, and modify the
thickness W of the nanoshell, as shown in the schemat-
ics of Fig. 2. The extinction spectra of the uncoupled
components are shown in Fig. 2(a), with a black line
for the spectrum of a homogeneous excitonic sphere of
R = 10nm, and with red (blue) dashed lines for the LRA
(GNOR) spectra of a silver nanoshell with W = 1.22nm.
A thicker shell than in Fig. 1(a) is required to bring the
plasmon resonance at 2.7 eV, since a higher-index dielec-
tric is now used as the core material. The corresponding
coupled spectra are shown by solid lines, and are charac-
terised by a Rabi splitting h̄ΩR = 0.206 eV. In addition
to the two hybrid modes, a third peak of much lower
intensity is visible at 2.7 eV, which does not shift at all
under nonlocal corrections. This is the surface exciton
polariton mode excited at the outer surface of the dye
layer, which indeed has no reason to be affected by the

plasmon modal shifts [93]. It is always excited for this
kind of nanoparticle topology, but it is usually masked by
the much stronger peaks of the hybrid modes due to the
large size of the plasmonic particles. The small nanoshell
dimensions explored here ensure that it is clearly dis-
cernible in the extinction spectra. Such modes were re-
cently explored as substitutes for plasmons in metals for
applications in nanophotonics [94].

FIG. 2: (a) Dipolar particle-like plasmon mode for a nanoshell
with R1 = 5nm, W = 1.22 nm (see schematics on the right)
calculated within LRA (red lines) and GNOR (blue lines)
in the absence (dashed lines) or presence (solid lines) of a
concentric homogeneous excitonic layer with R = 10 nm and
h̄ωexc = 2.7 eV. The black solid line depicts the excitonic res-
onance of the corresponding homogeneous excitonic sphere
(R = 10nm). (b) Energies of the hybrid modes ω± as a func-
tion of h̄ωp, within LRA (red lines) and GNOR (blue lines).
Red solid dots and open triangles represent the approximate
solutions of the CHO model and the Mie expansions, respec-
tively. The thin nearly horizontal line at 2.7 eV is the un-
coupled excitonic resonance supported by the outer surface of
the particle. Extinction contour plots, and the corresponding
uncoupled plasmon and exciton energies (white dashed lines),
are shown in (c) and (d) for the LRA and GNOR model re-
spectively. The two contours share a common colour scale.

In Fig. 2(b) we present the corresponding dispersion
diagram, as a function of the plasmon energy, similarly
to Fig. 1(b). Given our previous analysis in relation to
Fig. 1(b), and the spectra presented in Fig. 2(a), it is
not surprising that the dispersion lines for the LRA and
GNOR models are again indistinguishable. The CHO
model captures excellently the two hybrid modes, as
shown by the red solid dots, but it lacks a description
of the uncoupled excitonic mode. This weak resonance
is excellently reproduced however by the corresponding
Mie-based analytic solutions. Since in this case we study
a three-layer nanoparticle, one should in principle obtain
the corresponding scattering matrix [95, 96] and use ap-
propriate asymptotic expressions [97] to obtain the res-
onances from its poles. A simpler approximation, which
we successfully adopt here, is to separate the nanoparti-
cle into two components: a metallic nanoshell embedded
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in an infinite excitonic environment described by a dielec-
tric function ε3, for which the hybrid modes ω± can be
obtained from Eq. (3) (replacing ε with ε3), and an ex-
citonic sphere of ε3 in an infinite environment described
by ε, for which the resonance condition is [81]

ε3 + 2ε = 0 . (5)

As can be seen by the open triangles in Fig. 2(b), due to
the small sizes involved, this approach works extremely
well to accurately describe not only the hybrid modes
ω±, but the uncoupled excitonic mode as well. Finally, in
Figs. 2(c)-(d) it is shown through full extinction contours
that the additional nonlocal broadening of the modes is
not significant in this case either. Considering the initial,
uncoupled linewidths of the plasmon resonances shown
in Fig. 2(a) (0.049 eV for LRA and 0.072 eV for GNOR),
Eq. (4) again implies that strong coupling is still achiev-
able under nonlocal corrections.

FIG. 3: Extinction contour plots as a function of dimer gap
width d for the exciton core–silver shell dimers shown in the
schematics on the right (R = 20 nm, W = 2nm), within the
LRA (a) and GNOR (b) models. Vertical dashed lines indi-
cate the gap for which the bonding dimer plasmon matches
the energy of the exciton (h̄ωexc = 1.7 eV). (c) Extinction
spectra obtained with the LRA (red lines) and GNOR (blue
lines) models, in the presence of an excitonic core, for the gap
for which the particular model predicts a plasmon resonance
at 1.7 eV (solid lines) and for the d for which the other model
is tuned (dashed lines). (d) Dispersion diagram of the two
hybrid modes as a function of h̄ωp, which is obtained for each
model by modifying d in the absence of an excitonic nanopar-
ticle core. Red dots indicate the solutions of the CHO model
in the LRA case.

In search for a geometry where the footprint of nonlo-
cality might be stronger, we depart from the description
of single nanoparticles, and study in Figure 3 an exciton
core–silver shell dimer. The particles have a total radius
R = 20nm and a metallic shell of thickness D = 2nm,
and are separated by a variable gap of width d. Both
the thin shell thickness and the narrow dimer gap are ex-
pected to enhance nonlocal effects in this case. Instead

of tuning the plasmon through the shell thickness, as in
Figs 1 and 2, here we change the width of the gap. Plas-
mon hybridisation [91] causes the bonding dimer plasmon
modes to redshift as the gap shrinks [59], allowing for effi-
cient tuning of the optical response. Extinction contours
obtained with the LRA and GNOR models as a function
of d are shown in Figs. 3(a) and (b), respectively, for an
excitonic core with h̄ωexc = 1.7 eV. The vertical dashed
lines denote the gap for which the bonding dimer plas-
mon mode in the absence of a dye core is at 1.7 eV, and
indicate a 0.22nm difference between the two models. In
Fig. 3(c) extinction spectra for each model are presented
both for this gap width within the corresponding model
(solid lines), and also for the gap which tunes the plasmon
at 1.7 eV within the other model (dashed lines). Exam-
ining the tuned situation for each model, it is evident
that no change in the width of the Rabi splitting and no
significant broadening can be observed for this geometry
either. This is more clear in the dispersion diagram of
Fig. 3(d), where the energy of the hybrid modes is plotted
versus the plasmon energy in each model, leading once
more to almost identical lines, also in good agreement
with the CHO model.

Finally, we turn again to the inverse topology, of a
dimer enclosed in an excitonic matrix, as shown schemat-
ically on the right-hand side of Fig. 4. To avoid rep-
etitions and make things more interesting, instead of
nanoshells we consider homogeneous silver spheres of ra-
dius R = 15nm separated by a gap of d =1nm, covered
with an excitonic layer made of two spheres of radius
20 nm, overlapping around the gap as they are concentric
with the corresponding silver particles. In the absence of
the excitonic layer the plasmon resonance is found to be
at 2.92 eV within LRA, and at 2.97 eV within GNOR. In-
stead of tuning the dimer plasmon through some geomet-
rical parameter, we keep in this case the geometry fixed
and modify h̄ωexc instead, an approach often adopted in
theoretical calculations due to its convenience [45]. Ex-
tinction contour maps obtained with LRA and GNOR
are shown in Figs. 4(a) and (b) respectively, together
with the uncoupled excitonic and plasmonic lines (white
dashed lines). The corresponding extinction spectra in
the presence (solid lines) or absence (dashed lines) of
the excitonic layer are shown in Fig. 4(c). One again
observes that the width of the Rabi splitting appears
to be nearly unaffected, but the hybrid modes are sig-
nificantly broadened. Furthermore, the uncoupled exci-
tonic peak, which is strong within LRA, nearly vanishes
within GNOR, and can only be traced through the cor-
responding scattering spectra. Nevertheless, this strong
damping, originating mainly from the presence of a much
larger amount of metallic material (homogeneous spheres
instead of shells), is still not enough to bring the system
outside the strong coupling regime as defined by Eq. (4).
In addition, careful examination of the dispersion dia-
grams in Fig. 4(d) shows that the Rabi splitting is in
fact narrower by 0.012 eV in the case of GNOR, finally
identifying a small impact of nonlocality on the plexci-
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tonic response.

FIG. 4: Extinction contour plots as a function of excitonic
energy h̄ωexc for a silver nanosphere (R = 15nm) dimer (d =
1nm) encapsulated in an excitonic matrix, as shown in the
schematics on the right, within the LRA (a) and GNOR (b)
models. The white dashed lines indicate the uncoupled plas-
mon and exciton energies. (c) Extinction spectra obtained
within LRA (red lines) and GNOR (blue lines), in the ab-
sence (dashed lines) or presence (solid lines) of the excitonic
matrix. (d) Dispersion diagram of the two hybrid modes as a
function of h̄ωexc. The thin diagonal lines indicate the uncou-
pled excitonic resonance supported by the outer surface of the
excitonic layer. Red and blue solid dots indicate the solutions
of the CHO model in the LRA and GNOR case, respectively.

In all the examples explored above, we focused on the
dominant, dipolar plasmon modes, which are more rel-
evant from an experimental point of view. While we
have identified situations in which our conclusions hold
for higher-order modes as well, the coupling of excitons
with e.g. quadrupolar single-particle or bonding-dimer
modes, and how it is affected by nonlocal effects, re-
lies on several parameters, and a more systematic study
is required. Efficient excitation of higher-order modes
in single nanoparticles calls for larger particle sizes, for
which nonlocal effects tend to become negligible [60]. On
the other hand, for very thin metallic shells, nonlocality
can wash out higher-order modes [80], so that a classi-
cally predicted Rabi splitting could disappear completely.
Similarly, the efficient excitation of quadrupolar bonding-
dimer modes might require to enter the truly sub-nm
regime [59], where quantum tunnelling prevails, restrict-
ing nonlocality to a secondary role. Further theoretical
work in the future should shed more light on such issues.
To better understand the reason why nonlocal fre-

quency shifts do not usually affect the width of the Rabi
splitting, one can recall once more the CHO model of
Eq. (2), according to which the energy difference between
the two hybrid modes is

∆E =

√

E2
R + (h̄ωp − h̄ωexc)

2
, (6)

where ER = h̄ΩR. Nonlocal effects introduce a small

correction to the plasmon, h̄ωp → h̄ωp + δE. In the
strong-coupling regime, where ωp ≃ ωexc, and assuming
at a first step that ER remains constant for simplicity,
Eq. (6) becomes

∆E ≃
√

E2
R + δE2 = ER

√

1 +

(

δE

ER

)2

. (7)

For Rabi splittings around 0.2 eV, and nonlocal blueshifts
of the order of 0.03 eV, typical values in the examples ex-
plored here, this introduces a change in ∆E of about
1%, which is hard to observe. According to the above
analysis, one needs to identify systems with much larger
nonlocal frequency shifts, accompanied with narrow Rabi
splittings, to obtain a strong effect. What is still miss-
ing however is the influence of nonlocality on the cou-
pling strength, and therefore, through g = 2h̄ΩR, on the
Rabi splitting itself. In a semi-classical approach, and as
long as the exact positions and orientations of individual
emitters in the excitonic layer can be disregarded, the
coupling strength is given by [15]

g = µ

√

Nh̄ω

2εε0V
, (8)

where N is the number of emitters characterised by a
transition dipole moment µ, ω is the transition frequency,
ε0 the vacuum permittivity and V the mode volume. For
spherical particles, it has been shown analytically that,
for the dipolar mode which is of interest here, the mode
volume depends only on the the geometrical volume and
the environment through V =

(

4πR3/3
)

(1 + 1/2ε) [98].
Nevertheless, this result was obtained assuming local re-
sponse functions for the metal, and nonlocal corrections
to V should be evaluated through the general definition
[99]

V =

∫

d3r u(r)

max {u(r)} , (9)

where u(r) is the electromagnetic energy density at posi-
tion r. Introducing nonlocal corrections into Eq. (9) has
been discussed in detail by Toscano et al. [100]. Our
calculations have shown that within the GNOR model V
typically increases by no more than 20%, which translates
into a≈ 10% decrease in the coupling strength. Since this
modification enters Eq. (6) through a ER → ER − δER

correction, the nonlocal changes in coupling strength and
plasmon energy tend, to first order, to cancel each other
out. This tendency is further strengthened once absorp-
tive losses are taken into account, which, according to
Eq. (1) introduce an extra damping correction δγ, work-
ing towards the same direction as δE in Eq. (7), to further
counterbalance the (relatively stronger) effect of increas-
ing the mode volume. In view of the above discussion,
interpreting the results of Figs. 1–4 and understanding
why nonlocal effects do not usually play an important
role in the exciton-plasmon coupling can be achieved in
a simple and intuitive manner.
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III. CONCLUSIONS

In summary, we explored the influence of nonlocal ef-
fects in the description of the metal on the coupling of
plasmonic nanoparticles with dye layers characterised by
an excitonic transition. Through detailed simulations, in
conjunction with analytical modelling, we showed that,
contrary to expectations based mainly on results for sin-
gle emitters in plasmonic environments, neither nonlocal
frequency shifts due to screening, nor surface-enhanced
Landau damping produces strong deviations from a de-
scription within classical electrodynamics. Apart from
extreme situations of dramatic nonlocal blueshifts in sit-
uations of already narrow Rabi splittings, nonlocality
affects plasmon-exciton coupling only incrementally, as
long as the excitonic material is sufficiently described as
a homogeneous layer. For simplicity, we have used here
the GNOR model, leaving quantum corrections based on
the Feibelman parameters for the centroid of charge or on
surface-dipole moments for future investigation [74, 77].
By analysing how nonlocal corrections in plasmonics en-
ter into the common coupled-oscillator model, we pro-
vided a simple, intuitive interpretation of our findings.
Novel plexcitonic architectures involving reduced, few-
nm length scales, can be analysed without the neces-
sity to resort to elaborate models going beyond classi-
cal electrodynamics, thus providing additional flexibility
in the design and optimisation of systems with strong
light-matter interactions.

IV. METHODS

Homogeneous silver nanoparticles and thin silver shells
are described by the experimental dielectric function εexp
of Johnson and Christy [101]. When nonlocal corrections
are introduced in the metal, the Drude part is subtracted
from εexp to produce the background contribution to the
metal dielectric function, ε∞, according to

εDrude = ε∞ −
ω2
p

ω (ω + iγp)

ε∞ = εexp +
ω2
p

ω (ω + iγp)
,

(10)

where for silver we use h̄ωp = 8.99 eV, h̄γp = 0.025 eV
[65].
In the case of single nanoparticles, we include nonlocal

corrections in the scattering matrix of the Mie solution
as described in Ref. [102]. For a homogeneous metallic
sphere of radius R described by a dielectric function ε1 in
a homogeneous medium of ε2 the electric-type nonlocal
Mie coefficients of multipole order ℓ, tTM

ℓ
, are given by

tTM

ℓ =
−ε1jℓ(x1) [x2jℓ(x2)]

′
+ ε2jℓ(x2)

{

[x1jℓ(x1)]
′
+∆ℓ

}

ε1jℓ(x1)[x2h
+
ℓ
(x2)]′ − ε2h

+
ℓ
(x2)

{

[x1jℓ(x1)]
′ +∆ℓ

} ,

(11)

where jℓ(x) and h+
ℓ
(x) are the spherical Bessel and first-

type Hankel functions, respectively, while xi = qiR with
qi being the (transverse) wave number in medium i and
′ denotes derivation with respect to the argument. The
nonlocal correction ∆ℓ to the Mie coefficients is given as

∆ℓ = ℓ (ℓ+ 1) jℓ(x1)
ε1 − ε∞

ε∞

jℓ(xL)

xLj′ℓ(xL)
, (12)

where xL = qLR and qL is the longitudinal wave num-
ber in the sphere, associated with the longitudinal di-
electric function εL, which is frequency- and wave vector-
dependent [62, 103]. The dispersion of longitudinal waves
is given by εL(ω,q) = 0. In the limiting case where
∆ℓ = 0 we retrieve the local result of standard Mie the-
ory. The corresponding analytical solution is lengthy
and can be found in the Supplementary Information of
Ref. [80].
In the case of dimers, we use a commercial finite-

element solver (Comsol Multiphysics 5.0) [104], appro-
priately adapted to include the description of nonlocal
effects [105], to solve the system of coupled equations
[85]

∇×∇×E(r, ω) =
(ω

c

)2

ε∞E(r, ω) + iωµ0J(r, ω)
[

β2

ω (ω + iγ)
+

D

iω

]

∇ [∇ · J(r, ω)] + J(r, ω) = σE(r, ω) ,

(13)

where E and J are the electric field and the induced cur-
rent density respectively; σ = iε0ω

2
p/(ω + iγp) is the

Drude conductivity, and µ0 is the vacuum permeabil-
ity, related to the velocity of light in vacuum through
c = 1/

√
ε0µ0.

In both approaches, the hydrodynamic parameter β is
taken equal to

√

3/5 vF, where vF = 1.39 · 106 m s−1 is
the Fermi velocity of silver [65], while for the diffusion
constant D we use D = 2.684 · 104 m2 s−1 [102]. Val-
ues of this order of magnitude reproduce well the exper-
imentally observed size-dependent broadening in small
metallic nanoparticles [106]. As the additional boundary
condition we adopt the usual condition of zero normal
component of the induced current density at the metal
boundary [65], which implies a hard-wall description of
the metal, an approach which might prove inefficient in
the case of good jellium metals [107, 108], but is rea-
sonable for a noble metal with high work function like
silver. When describing the interface between silver and
the excitonic layer, we assume that carriers from the one
medium are not allowed to enter the other, an assump-
tion justified by the fact that the excitonic layer consists
of an assembly of dye molecules, and is only effectively
described as a homogeneous layer.
For the excitonic material we use a Drude–Lorentz

model according to

ε = 1− fω2
exc

ω2 − ω2
exc + iωγexc

, (14)



8

where f is the reduced oscillator strength. Throughout
the paper ωexc is allowed to vary as stated in each case,
f = 0.02, and h̄γexc = 0.052 eV [12].
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coupling between organic molecules and plasmonic
nanostructures, in Quantum Plasmonics, Eds. S. I.
Bozhevolnyi, L. Mart́ın-Moreno, and F. J. Garćıa-Vidal
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de Abajo, Opt. Express 14, 9988 (2006).
[60] S. Raza, S. Kadkhodazadeh, T. Christensen, M. Di

Vece, M. Wubs, N. A. Mortensen, and N. Stenger, Na-
ture Commun. 6, 8788 (2015).

[61] W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P.
Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier,
Nature Commun. 7, 11495 (2016).
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