28 research outputs found

    Early life programming as a target for prevention of child and adolescent mental disorders

    Get PDF
    This paper concerns future policy development and programs of research for the prevention of mental disorders based on research emerging from fetal and early life programming. The current review offers an overview of findings on pregnancy exposures such as maternal mental health, lifestyle factors, and potential teratogenic and neurotoxic exposures on child outcomes. Outcomes of interest are common child and adolescent mental disorders including hyperactive, behavioral and emotional disorders. This literature suggests that the preconception and perinatal periods offer important opportunities for the prevention of deleterious fetal exposures. As such, the perinatal period is a critical period where future mental health prevention efforts should be focused and prevention models developed. Interventions grounded in evidence-based recommendations for the perinatal period could take the form of public health, universal and more targeted interventions. If successful, such interventions are likely to have lifelong effects on (mental) health

    Advance Access published March 30

    Get PDF
    Summary The modern environment is associated with an increasing burden of non-communicable diseases (NCDs). Mounting evidence implicates environmental exposures, experienced early in life (including in utero), in the aetiology of many NCDs, though the cellular/molecular mechanism(s) underlying this elevated risk across the life course remain unclear. Epigenetic variation has emerged as a candidate mediator of such effects. The Barwon Infant Study (BIS) is a population-derived birth cohort study (n ¼ 1074 infants) with antenatal recruitment, conducted in the south-east of Australia (Victoria). BIS has been designed to facilitate a detailed mechanistic investigation of development within an epidemiological framework. The broad objectives are to investigate the role of specific environmental factors, gut microbiota and epigenetic variation in early-life development, and subsequent immune, allergic, cardiovascular, respiratory and neurodevelopmental outcomes. Participants have been reviewed at birth and at 1, 6, 9 and 12 months, with 2-and 4-year reviews under way. Biological samples and measures include: maternal blood, faeces and urine during pregnancy; infant urine, faeces and blood at regular intervals during the first 4 years; lung function at 1 month and 4 years; cardiovascular assessment at 1 month and 4 years; skin-prick allergy testing and food challenge at 1 year; and neurodevelopmental assessment at 9 months, 2 and 4 years. Data access enquiries can be made at [www.barwoninfantstudy.org.au] or via [[email protected]]

    Genome-Wide Analyses of Vocabulary Size in Infancy and Toddlerhood:Associations With Attention-Deficit/Hyperactivity Disorder, Literacy, and Cognition-Related Traits

    Get PDF
    Background: The number of words children produce (expressive vocabulary) and understand (receptive vocabulary) changes rapidly during early development, partially due to genetic factors. Here, we performed a meta–genome-wide association study of vocabulary acquisition and investigated polygenic overlap with literacy, cognition, developmental phenotypes, and neurodevelopmental conditions, including attention-deficit/hyperactivity disorder (ADHD). Methods: We studied 37,913 parent-reported vocabulary size measures (English, Dutch, Danish) for 17,298 children of European descent. Meta-analyses were performed for early-phase expressive (infancy, 15–18 months), late-phase expressive (toddlerhood, 24–38 months), and late-phase receptive (toddlerhood, 24–38 months) vocabulary. Subsequently, we estimated single nucleotide polymorphism–based heritability (SNP-h2) and genetic correlations (rg) and modeled underlying factor structures with multivariate models. Results: Early-life vocabulary size was modestly heritable (SNP-h2 = 0.08–0.24). Genetic overlap between infant expressive and toddler receptive vocabulary was negligible (rg = 0.07), although each measure was moderately related to toddler expressive vocabulary (rg = 0.69 and rg = 0.67, respectively), suggesting a multifactorial genetic architecture. Both infant and toddler expressive vocabulary were genetically linked to literacy (e.g., spelling: rg = 0.58 and rg = 0.79, respectively), underlining genetic similarity. However, a genetic association of early-life vocabulary with educational attainment and intelligence emerged only during toddlerhood (e.g., receptive vocabulary and intelligence: rg = 0.36). Increased ADHD risk was genetically associated with larger infant expressive vocabulary (rg = 0.23). Multivariate genetic models in the ALSPAC (Avon Longitudinal Study of Parents and Children) cohort confirmed this finding for ADHD symptoms (e.g., at age 13; rg = 0.54) but showed that the association effect reversed for toddler receptive vocabulary (rg = −0.74), highlighting developmental heterogeneity. Conclusions: The genetic architecture of early-life vocabulary changes during development, shaping polygenic association patterns with later-life ADHD, literacy, and cognition-related traits.</p

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life

    Increased maternal non-oxidative energy metabolism mediates association between prenatal di-(2-ethylhexyl) phthalate (DEHP) exposure and offspring autism spectrum disorder symptoms in early life: A birth cohort study

    No full text
    Prenatal phthalate exposure has previously been linked to the development of autism spectrum disorder (ASD). However, the underlying biological mechanisms remain unclear. We investigated whether maternal and child central carbon metabolism is involved as part of the Barwon Infant Study (BIS), a population-based birth cohort of 1,074 Australian children. We estimated phthalate daily intakes using third-trimester urinary phthalate metabolite concentrations and other relevant indices. The metabolome of maternal serum in the third trimester, cord serum at birth and child plasma at 1 year were measured by nuclear magnetic resonance. We used the Small Molecule Pathway Database and principal component analysis to construct composite metabolite scores reflecting metabolic pathways. ASD symptoms at 2 and 4 years were measured in 596 and 674 children by subscales of the Child Behavior Checklist and the Strengths and Difficulties Questionnaire, respectively. Multivariable linear regression analyses demonstrated (i) prospective associations between higher prenatal di-(2-ethylhexyl) phthalate (DEHP) levels and upregulation of maternal non-oxidative energy metabolism pathways, and (ii) prospective associations between upregulation of these pathways and increased offspring ASD symptoms at 2 and 4 years of age. Counterfactual mediation analyses indicated that part of the mechanism by which higher prenatal DEHP exposure influences the development of ASD symptoms in early childhood is through a maternal metabolic shift in pregnancy towards non-oxidative energy pathways, which are inefficient compared to oxidative metabolism. These results highlight the importance of the prenatal period and suggest that further investigation of maternal energy metabolism as a molecular mediator of the adverse impact of prenatal environmental exposures such as phthalates is warranted

    Pre-school child blood lead levels in a population-derived Australian birth cohort: the Barwon Infant Study

    Full text link
    Objectives: To investigate blood lead levels in an Australian birth cohort of children; to identify factors associated with higher lead levels. Design, setting: Cross-sectional study within the Barwon Infant Study, a population birth cohort study in the Barwon region of Victoria (1074 infants, recruited June 2010 – June 2013). Data were adjusted for non-participation and attrition by propensity weighting. Participants: Blood lead was measured in 523 of 708 children appraised in the Barwon Infant Study pre-school review (mean age, 4.2 years; SD, 0.3 years). Main outcome measure: Blood lead concentration in whole blood (μg/dL). Results: The median blood lead level was 0.8\ua0μg/dL (range, 0.2–3.7\ua0μg/dL); the geometric mean blood lead level after propensity weighting was 0.97\ua0μg/dL (95% CI, 0.92–1.02\ua0μg/dL). Children in houses 50 or more years old had higher blood lead levels (adjusted mean difference [AMD], 0.13 natural log units; 95% CI, 0.02–0.24 natural log units; P\ua0=\ua00.020), as did children of families with lower household income (per $10\ua0000, AMD, –0.035 natural log units; 95% CI, –0.056 to –0.013 natural log units; P\ua0=\ua00.002) and those living closer to Point Henry (inverse square distance relationship; P\ua0=\ua00.002). Associations between hygiene factors and lead levels were evident only for children living in older homes. Conclusion: Blood lead levels in our pre-school children were lower than in previous Australian surveys and recent surveys in areas at risk of higher exposure, and no children had levels above 5\ua0μg/dL. Our findings support advice to manage risks related to exposure to historical lead, especially in older houses
    corecore