68 research outputs found

    Multiple sclerosis and mental health related quality of life: The role of defense mechanisms, defense styles and family environment

    Get PDF
    Background: Multiple sclerosis is a demyelinating chronic neurologic disease that can lead to disability and thus to deterioration of quality of life. Psychological parameters such as ego defense mechanisms, defense styles and family environment are important factors in the adaptation process, and as such they can play important roles in QoL. This study aims to assess the psychological factors as well as the clinical and demographic characteristics related to mental health quality of life (MHQoL). Methods: This was an observational, cross-sectional study conducted in a sample of 90 people with MS in the years 2018–2020. All participants completed the following questionnaires: MSQoL-54, DSQ-88, LSI, FES-R, SOC, BDI-II, STAI. Disability was assessed using EDSS. Results:In multiple linear regression, significant roles were played by depression (R2: 41.1%, p: 0.001) and, to a lesser extent, the event of a relapse (R2: 3.5%, p: 0.005), expressiveness (R2: 3.6%, p < 0.05) and image distortion style (R2: 4.5%, p: 0.032). After performing a hierarchical-stepwise analysis (excluding depression), the important factors were maladaptive defense style (R2: 23.7%, p: 0.002), the event of relapse (R2: 8.1%, p < 0.001), expressiveness (R2: 5.5%, p: 0.004) and self-sacrificing defense style (R2: 2.4%, p: 0.071). Conclusion: Psychological factors play important roles in MHQoL of people with multiple sclerosis. Thus, neurologists should integrate in their practice an assessment by mental health specialists. Moreover, targeted psychotherapeutic interventions could be planned i to improve QoL

    A Nearly Linear-Time PTAS for Explicit Fractional Packing and Covering Linear Programs

    Get PDF
    We give an approximation algorithm for packing and covering linear programs (linear programs with non-negative coefficients). Given a constraint matrix with n non-zeros, r rows, and c columns, the algorithm computes feasible primal and dual solutions whose costs are within a factor of 1+eps of the optimal cost in time O((r+c)log(n)/eps^2 + n).Comment: corrected version of FOCS 2007 paper: 10.1109/FOCS.2007.62. Accepted to Algorithmica, 201

    Cyber Security Certification Programmes

    Get PDF
    Although a large and fast-growing workforce for qualified cybersecurity professionals exists, developing a cybersecurity certification framework has to overcome many challenges. Towards this end, an extended review of the cybersecurity certifications offered currently on the market from 9 major issuing companies is conducted. Moreover, the guidelines for the definition of a cybersecurity certification framework as they are provided from the recent Cyber Security Act and framework of ENISA, NIST and ISO/IEC 17024 are covered. A vast comparison among the presented cybersecurity certifications is given, based not only on the cybersecurity domain covered but also the required level of candidate's experience. A proposed certification program has been also analyzed based on the learning pathways and the knowledge areas described in FORESIGHT

    Pitfalls in machine learning‐based assessment of tumor‐infiltrating lymphocytes in breast cancer: a report of the international immuno‐oncology biomarker working group

    Get PDF
    The clinical significance of the tumor-immune interaction in breast cancer (BC) has been well established, and tumor-infiltrating lymphocytes (TILs) have emerged as a predictive and prognostic biomarker for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2 negative) breast cancer (TNBC) and HER2-positive breast cancer. How computational assessment of TILs can complement manual TIL-assessment in trial- and daily practices is currently debated and still unclear. Recent efforts to use machine learning (ML) for the automated evaluation of TILs show promising results. We review state-of-the-art approaches and identify pitfalls and challenges by studying the root cause of ML discordances in comparison to manual TILs quantification. We categorize our findings into four main topics; (i) technical slide issues, (ii) ML and image analysis aspects, (iii) data challenges, and (iv) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns, or design choices in the computational implementation. To aid the adoption of ML in TILs assessment, we provide an in-depth discussion of ML and image analysis including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial- and routine clinical management of patients with TNBC

    Spatial analyses of immune cell infiltration in cancer : current methods and future directions. A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer

    Get PDF
    Modern histologic imaging platforms coupled with machine learning methods have provided new opportunities to map the spatial distribution of immune cells in the tumor microenvironment. However, there exists no standardized method for describing or analyzing spatial immune cell data, and most reported spatial analyses are rudimentary. In this review, we provide an overview of two approaches for reporting and analyzing spatial data (raster versus vector-based). We then provide a compendium of spatial immune cell metrics that have been reported in the literature, summarizing prognostic associations in the context of a variety of cancers. We conclude by discussing two well-described clinical biomarkers, the breast cancer stromal tumor infiltrating lymphocytes score and the colon cancer Immunoscore, and describe investigative opportunities to improve clinical utility of these spatial biomarkers. © 2023 The Pathological Society of Great Britain and Ireland.http://www.thejournalofpathology.com/hj2024ImmunologySDG-03:Good heatlh and well-bein

    Image-based multiplex immune profiling of cancer tissues: translational implications. A report of the International Immuno-oncology Biomarker Working Group on Breast Cancer

    Get PDF
    Recent advances in the field of immuno-oncology have brought transformative changes in the management of cancer patients. The immune profile of tumours has been found to have key value in predicting disease prognosis and treatment response in various cancers. Multiplex immunohistochemistry and immunofluorescence have emerged as potent tools for the simultaneous detection of multiple protein biomarkers in a single tissue section, thereby expanding opportunities for molecular and immune profiling while preserving tissue samples. By establishing the phenotype of individual tumour cells when distributed within a mixed cell population, the identification of clinically relevant biomarkers with high-throughput multiplex immunophenotyping of tumour samples has great potential to guide appropriate treatment choices. Moreover, the emergence of novel multi-marker imaging approaches can now provide unprecedented insights into the tumour microenvironment, including the potential interplay between various cell types. However, there are significant challenges to widespread integration of these technologies in daily research and clinical practice. This review addresses the challenges and potential solutions within a structured framework of action from a regulatory and clinical trial perspective. New developments within the field of immunophenotyping using multiplexed tissue imaging platforms and associated digital pathology are also described, with a specific focus on translational implications across different subtypes of cancer

    Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer

    Get PDF
    The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer
    • 

    corecore