1,272 research outputs found

    The Final Amen: Designing and Implementing a Christlike System for the Closure of WayPointe Christian Fellowship

    Get PDF
    Like a myriad of other churches across the country, WayPointe Christian Fellowship (WCF) experienced a long decline leading to a critical question: Should the church permanently close? In the case of WCF, the answer was yes, which led to other questions about how to accomplish the task while maximizing God\u27s glory, minimizing the pain felt by those involved, and preparing the congregation to migrate to another body of believers. This thesis project was designed to enable the leaders of WCF and other church leaders to answer these questions. In this pursuit, a comprehensive closure plan was created and implemented at WCF. For the purposes of this thesis, the intervention conducted was the closure plan and the effect of that plan upon the people of WCF, its key leaders, and its pastor. In surveys, focus groups, and interviews, the members of WCF showed a significant increase in positive emotional expressions and a corresponding decline in negative emotional expressions. The participants describe how their participation in the closure plan led to these results. Specifically, respondents noted the unity of the church as a key to their acceptance of the church closure process. In accepting the death of their church, nearly all congregants went on to pursue membership in other local churches. The analysis of these results leads to encouraging conclusions about the painful process of church closure

    Accuracy of a pulse-coherent acoustic Doppler profiler in a wave-dominated flow

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Journal of Atmospheric and Oceanic Technology 21 (2004): 1448–1461, doi:10.1175/1520-0426(2004)0212.0.CO;2.The accuracy of velocities measured by a pulse-coherent acoustic Doppler profiler (PCADP) in the bottom boundary layer of a wave-dominated inner-shelf environment is evaluated. The downward-looking PCADP measured velocities in eight 10-cm cells at 1 Hz. Velocities measured by the PCADP are compared to those measured by an acoustic Doppler velocimeter for wave orbital velocities up to 95 cm s−1 and currents up to 40 cm s−1. An algorithm for correcting ambiguity errors using the resolution velocities was developed. Instrument bias, measured as the average error in burst mean speed, is −0.4 cm s−1 (standard deviation = 0.8). The accuracy (root-mean-square error) of instantaneous velocities has a mean of 8.6 cm s−1 (standard deviation = 6.5) for eastward velocities (the predominant direction of waves), 6.5 cm s−1 (standard deviation = 4.4) for northward velocities, and 2.4 cm s−1 (standard deviation = 1.6) for vertical velocities. Both burst mean and root-mean-square errors are greater for bursts with ub ≥ 50 cm s−1. Profiles of burst mean speeds from the bottom five cells were fit to logarithmic curves: 92% of bursts with mean speed ≥ 5 cm s−1 have a correlation coefficient R2 > 0.96. In cells close to the transducer, instantaneous velocities are noisy, burst mean velocities are biased low, and bottom orbital velocities are biased high. With adequate blanking distances for both the profile and resolution velocities, the PCADP provides sufficient accuracy to measure velocities in the bottom boundary layer under moderately energetic inner-shelf conditions.This work was funded by the U.S. Geological Survey as part of the Southwest Washington Coastal Erosion Stud

    Accuracy of a Pulse-Coherent Acoustic Doppler Profiler in a Wave-Dominated Flow

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Journal of Atmospheric and Oceanic Technology 21 (2004): 1448–1461, doi:10.1175/1520-0426(2004)0212.0.CO;2.The accuracy of velocities measured by a pulse-coherent acoustic Doppler profiler (PCADP) in the bottom boundary layer of a wave-dominated inner-shelf environment is evaluated. The downward-looking PCADP measured velocities in eight 10-cm cells at 1 Hz. Velocities measured by the PCADP are compared to those measured by an acoustic Doppler velocimeter for wave orbital velocities up to 95 cm s−1 and currents up to 40 cm s−1. An algorithm for correcting ambiguity errors using the resolution velocities was developed. Instrument bias, measured as the average error in burst mean speed, is −0.4 cm s−1 (standard deviation = 0.8). The accuracy (root-mean-square error) of instantaneous velocities has a mean of 8.6 cm s−1 (standard deviation = 6.5) for eastward velocities (the predominant direction of waves), 6.5 cm s−1 (standard deviation = 4.4) for northward velocities, and 2.4 cm s−1 (standard deviation = 1.6) for vertical velocities. Both burst mean and root-mean-square errors are greater for bursts with ub ≥ 50 cm s−1. Profiles of burst mean speeds from the bottom five cells were fit to logarithmic curves: 92% of bursts with mean speed ≥ 5 cm s−1 have a correlation coefficient R2 > 0.96. In cells close to the transducer, instantaneous velocities are noisy, burst mean velocities are biased low, and bottom orbital velocities are biased high. With adequate blanking distances for both the profile and resolution velocities, the PCADP provides sufficient accuracy to measure velocities in the bottom boundary layer under moderately energetic inner-shelf conditions.This work was funded by the U.S. Geological Survey as part of the Southwest Washington Coastal Erosion Stud

    The cospectrum of stress-carrying turbulence in the presence of surface gravity waves

    Get PDF
    Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 29-44, doi:10.1175/JPO-D-17-0016.1.The cospectrum of the horizontal and vertical turbulent velocity fluctuations, an essential tool for understanding measurements of the turbulent Reynolds shear stress, often departs in the ocean from the shape that has been established in the atmospheric surface layer. Here, we test the hypothesis that this departure is caused by advection of standard boundary layer turbulence by the random oscillatory velocities produced by surface gravity waves. The test is based on a model with two elements. The first is a representation of the spatial structure of the turbulence, guided by rapid distortion theory, and consistent with the one-dimensional cospectra that have been measured in the atmosphere. The second model element is a map of the spatial structure of the turbulence to the temporal fluctuations measured at fixed sensors, assuming advection of frozen turbulence by the velocities associated with surface waves. The model is adapted to removal of the wave velocities from the turbulent fluctuations using spatial filtering. The model is tested against previously published laboratory measurements under wave-free conditions and two new sets of measurements near the seafloor in the coastal ocean in the presence of waves. Although quantitative discrepancies exist, the model captures the dominant features of the laboratory and field measurements, suggesting that the underlying model physics are sound.This research was supported by National Science Foundation Ocean Sciences Division Award 1356060 and the U.S. Geological Survey Coastal and Marine Geology Program

    Advantages and limitations to the use of optical measurements to study sediment properties

    Get PDF
    Measurements of optical properties have been used for decades to study particle distributions in the ocean. They are useful for estimating suspended mass concentration as well as particle-related properties such as size, composition, packing (particle porosity or density), and settling velocity. Measurements of optical properties are, however, biased, as certain particles, because of their size, composition, shape, or packing, contribute to a specific property more than others. Here, we study this issue both theoretically and practically, and we examine different optical properties collected simultaneously in a bottom boundary layer to highlight the utility of such measurements. We show that the biases we are likely to encounter using different optical properties can aid our studies of suspended sediment. In particular, we investigate inferences of settling velocity from vertical profiles of optical measurements, finding that the effects of aggregation dynamics can seldom be ignored

    Advantages and limitations to the use of optical measurements to study sediment properties

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Boss, E., Sherwood, C. R., Hill, P., & Milligan, T. Advantages and limitations to the use of optical measurements to study sediment properties. Applied Sciences-Basel, 8(12), (2018):2692, doi:10.3390/app8122692.Measurements of optical properties have been used for decades to study particle distributions in the ocean. They are useful for estimating suspended mass concentration as well as particle-related properties such as size, composition, packing (particle porosity or density), and settling velocity. Measurements of optical properties are, however, biased, as certain particles, because of their size, composition, shape, or packing, contribute to a specific property more than others. Here, we study this issue both theoretically and practically, and we examine different optical properties collected simultaneously in a bottom boundary layer to highlight the utility of such measurements. We show that the biases we are likely to encounter using different optical properties can aid our studies of suspended sediment. In particular, we investigate inferences of settling velocity from vertical profiles of optical measurements, finding that the effects of aggregation dynamics can seldom be ignored.This work was supported by the Office of Naval Research and the United States Geological Survey Coastal and Marine Geology Program. The unique instrument platform and data acquisition system was designed and built by technical staff lead by Marinna Martini at the United States Geological Survey Woods Hole Coastal and Marine Science Center. This team was also responsible for deployment and recovery of the instrumentation. We thank the Woods Hole Oceanographic Institution (WHOI) MVCO staff for support during this experiment, and we thank the captains and crews of the R/V Connecticut and the R/V Tioga. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the United States Government. This paper has benefited significantly from insightful comments from D. Stramski, A. Aretxabaleta and two anonymous reviewers

    Sediment dynamics in the Adriatic Sea investigated with coupled models

    Get PDF
    Several large research programs focused on the Adriatic Sea in winter 2002-2003, making it an exciting place for sediment dynamics modelers (Figure 1). Investigations of atmospheric forcing and oceanic response (including wave generation and propagation, water-mass formation, stratification, and circulation), suspended material, bottom boundary layer dynamics, bottom sediment, and small-scale stratigraphy were performed by European and North American researchers participating in several projects. The goal of EuroSTRATAFORM researchers is to improve our ability to understand and simulate the physical processes that deliver sediment to the marine environment and generate stratigraphic signatures. Scientists involved in the Po and Apennine Sediment Transport and Accumulation (PASTA) experiment benefited from other major research programs including ACE (Adriatic Circulation Experiment), DOLCE VITA (Dynamics of Localized Currents and Eddy Variability in the Adriatic), EACE (the Croatian East Adriatic Circulation Experiment project), WISE (West Istria Experiment), and ADRICOSM (Italian nowcasting and forecasting) studies

    Sediment Transport Model Including Short-Lived Radioisotopes: Model Description and Idealized Test Cases

    Get PDF
    Geochronologies derived from sediment cores in coastal locations are often used to infer event bed characteristics such as deposit thicknesses and accumulation rates. Such studies commonly use naturally occurring, short-lived radioisotopes, such as Beryllium-7 (Be-7) and Thorium-234 (Th-234), to study depositional and post-depositional processes. These radioisotope activities, however, are not generally represented in sediment transport models that characterize coastal flood and storm deposition with grain size patterns and deposit thicknesses. We modified the Community Sediment Transport Modeling System (CSTMS) to account for reactive tracers and used this capability to represent the behavior of these short-lived radioisotopes on the sediment bed. This paper describes the model and presents results from a set of idealized, one-dimensional (vertical) test cases. The model configuration represented fluvial deposition followed by periods of episodic storm resuspension. Sensitivity tests explored the influence on seabed radioisotope profiles by the intensities of bioturbation and wave resuspension and the thickness of fluvial deposits. The intensity of biodiffusion affected the persistence of fluvial event beds as evidenced by Be-7. Both resuspension and biodiffusion increased the modeled seabed inventory of Th-234. A thick fluvial deposit increased the seabed inventory of Be-7 and Th-234 but mixing over time greatly reduced the difference in inventory of Th-234 in fluvial deposits of different thicknesses

    Collaboration tools and techniques for large model datasets

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Marine Systems 69 (2008): 154-161, doi:10.1016/j.jmarsys.2007.02.013.In MREA and many other marine applications, it is common to have multiple models running with different grids, run by different institutions. Techniques and tools are described for low-bandwidth delivery of data from large multidimensional data sets, such as those from meteorological and oceanographic models, directly into generic analysis and visualization tools. Output is stored using the NetCDF CF Metadata Conventions, and then delivered to collaborators over the web via OPeNDAP. OPeNDAP datasets served by different institutions are then organized via THREDDS catalogs. Tools and procedures are then used which enable scientists to explore data on the original model grids using tools they are familiar with. It is also low-bandwidth, enabling users to extract just the data they require, an important feature for access from ship or remote areas. The entire implementation is simple enough to be handled by modelers working with their webmasters – no advanced programming support is necessary.S. Carniel was partially supported by the Office of Naval Research (ONR grant number N00014-05-1-0730). I. Janekovic was supported by the Croatian Ministry of Science, Education and Sport (grant number 0098113)
    • …
    corecore