5,264 research outputs found

    Weathered Fair View

    Get PDF

    The Deep End

    Get PDF

    Gray Scale

    Get PDF

    Evaluation of Potentially Nonlethal Sampling Methods for Monitoring Mercury Concentrations in Smallmouth Bass (\u3ci\u3eMicropterus dolomieu\u3c/i\u3e)

    Get PDF
    We evaluated three potentially nonlethal alternatives to fillet sampling for the determination of mercury (Hg) concentrations in smallmouth bass (Micropterus dolomieu). Fish (n = 62, 226–464 mm total length) from six sites in southern Missouri were captured by electrofishing. Blood samples (1 mL) from each fish were obtained by caudal veinipuncture with a heparinized needle and syringe. Biopsy needle (10 mm x 14 gauge; three cuts per fish; 10–20 mg total dry weight) and biopsy punch (7 mm x 5 mm in diameter, one plug per fish, 30–50 mg dry weight) samples were obtained from the area beneath the dorsal fin. Fillet samples were obtained from the opposite side of the fish. All samples were freeze-dried and analyzed for total Hg by combustion amalgamation atomic absorption spectrophotometry. Mean relative standard deviations (RSDs) of triplicate samples were similar for all four methods (2.2–2.4%), but the range of RSDs was greater for blood (0.4–5.5%) than for the muscle methods (1.8–4.0%). Total Hg concentrations in muscle were 0.0200–0.8809 lg/g wet weight; concentrations in plug, needle, and fillet samples from each fish were nearly identical. Blood Hg concentrations were 0.0006–0.0812 lg/mL and were highly correlated with muscle concentrations; linear regressions between log-transformed blood and fillet Hg concentrations were linear and statistically significant (p \u3c 0.01), and explained 91–93% of the total variation. Correlations between fillet Hg concentrations and fish size and age were weak; together they explained \u3c37% of the total variation, and the relations differed among sites. Overall, any of the alternative methods could provide satisfactory estimates of fillet Hg in smallmouth bass; however, both blood and plug sampling with disposable instruments were easier to perform than needle sampling. The biopsy needle was the most difficult to use, especially on smaller fish, and its relative expense necessitates reuse and, consequently, thorough cleaning between fish to prevent cross-contamination

    Concentration Trends for Lead and Calcium-Normalized Lead in Fish Fillets from the Big River, a Mining-Contaminated Stream in Southeastern Missouri USA

    Get PDF
    Lead (Pb) and calcium (Ca) concentrations were measured in fillet samples of longear sunfish (Lepomis megalotis) and redhorse suckers (Moxostoma spp.) collected in 2005–2012 from the Big River, which drains a historical mining area in southeastern Missouri and where a consumption advisory is in effect due to elevated Pb concentrations in fish. Lead tends to accumulated in Ca-rich tissues such as bone and scale. Concentrations of Pb in fish muscle are typically low, but can become elevated in fillets from Pb-contaminated sites depending in part on how much bone, scale, and skin is included in the sample. We used analysis-of-covariance to normalize Pb concentration to the geometric mean Ca concentration (415 ug/g wet weight, ww), which reduced variation between taxa, sites, and years, as was the number of samples that exceeded Missouri consumption advisory threshold (300 ng/g ww). Concentrations of Pb in 2005–2012 were lower than in the past, especially after Ca-normalization, but the consumption advisory is still warranted because concentrations were [300 ng/g ww in samples of both taxa from contaminated sites. For monitoring purposes, a simple linear regression model is proposed for estimating Ca-normalized Pb concentrations in fillets from Pb:Ca molar ratios as a way of reducing the effects of differing preparation methods on fillet Pb variation
    • …
    corecore