50 research outputs found

    Membrane-Bound Steel Factor Maintains a High Local Concentration for Mouse Primordial Germ Cell Motility, and Defines the Region of Their Migration

    Get PDF
    Steel factor, the protein product of the Steel locus in the mouse, is a multifunctional signal for the primordial germ cell population. We have shown previously that its expression accompanies the germ cells during migration to the gonads, forming a “travelling niche” that controls their survival, motility, and proliferation. Here we show that these functions are distributed between the alternatively spliced membrane-bound and soluble forms of Steel factor. The germ cells normally migrate as individuals from E7.5 to E11.5, when they aggregate together in the embryonic gonads. Movie analysis of Steel-dickie mutant embryos, which make only the soluble form, at E7.5, showed that the germ cells fail to migrate normally, and undergo “premature aggregation” in the base of the allantois. Survival and directionality of movement is not affected. Addition of excess soluble Steel factor to Steel-dickie embryos rescued germ cell motility, and addition of Steel factor to germ cells in vitro showed that a fourfold higher dose was required to increase motility, compared to survival. These data show that soluble Steel factor is sufficient for germ cell survival, and suggest that the membrane-bound form provides a higher local concentration of Steel factor that controls the balance between germ cell motility and aggregation. This hypothesis was tested by addition of excess soluble Steel factor to slice cultures of E11.5 embryos, when migration usually ceases, and the germ cells aggregate. This reversed the aggregation process, and caused increased motility of the germ cells. We conclude that the two forms of Steel factor control different aspects of germ cell behavior, and that membrane-bound Steel factor controls germ cell motility within a “motility niche” that moves through the embryo with the germ cells. Escape from this niche causes cessation of motility and death by apoptosis of the ectopic germ cells

    Distinct timescales of population coding across cortex

    Get PDF
    The cortex represents information across widely varying timescales1–5. For instance, sensory cortex encodes stimuli that fluctuate over few tens of milliseconds6,7, whereas in association cortex behavioral choices can require the maintenance of information over seconds8,9. However, it remains poorly understood if diverse timescales result mostly from features intrinsic to individual neurons or from neuronal population activity. This question is unanswered because the timescales of coding in populations of neurons have not been studied extensively, and population codes have not been compared systematically across cortical regions. Here we discovered that population codes can be essential to achieve long coding timescales. Furthermore, we found that the properties of population codes differ between sensory and association cortices. We compared coding for sensory stimuli and behavioral choices in auditory cortex (AC) and posterior parietal cortex (PPC) as mice performed a sound localization task. Auditory stimulus information was stronger in AC than in PPC, and both regions contained choice information. Although AC and PPC coded information by tiling in time neurons that were transiently informative for ~200 milliseconds, the areas had major differences in functional coupling between neurons, measured as activity correlations that could not be explained by task events. Coupling among PPC neurons was strong and extended over long time lags, whereas coupling among AC neurons was weak and short-lived. Stronger coupling in PPC led to a population code with long timescales and a representation of choice that remained consistent for approximately one second. In contrast, AC had a code with rapid fluctuations in stimulus and choice information over hundreds of milliseconds. Our results reveal that population codes differ across cortex and that coupling is a variable property of cortical populations that affects the timescale of information coding and the accuracy of behavior

    Three-Dimensional Printing Bioceramic Scaffolds Using Direct-Ink-Writing for Craniomaxillofacial Bone Regeneration

    Get PDF
    Defects characterized as large osseous voids in bone, in certain circumstances, are difficult to treat, requiring extensive treatments which lead to an increased financial burden, pain, and prolonged hospital stays. Grafts exist to aid in bone tissue regeneration (BTR), among which ceramic-based grafts have become increasingly popular due to their biocompatibility and resorbability. BTR using bioceramic materials such as ÎČ-tricalcium phosphate has seen tremendous progress and has been extensively used in the fabrication of biomimetic scaffolds through the three-dimensional printing (3DP) workflow. 3DP has hence revolutionized BTR by offering unparalleled potential for the creation of complex, patient, and anatomic location-specific structures. More importantly, it has enabled the production of biomimetic scaffolds with porous structures that mimic the natural extracellular matrix while allowing for cell growth-a critical factor in determining the overall success of the BTR modality. While the concept of 3DP bioceramic bone tissue scaffolds for human applications is nascent, numerous studies have highlighted its potential in restoring both form and function of critically sized defects in a wide variety of translational models. In this review, we summarize these recent advancements and present a review of the engineering principles and methodologies that are vital for using 3DP technology for craniomaxillofacial reconstructive applications. Moreover, we highlight future advances in the field of dynamic 3D printed constructs via shape-memory effect, and comment on pharmacological manipulation and bioactive molecules required to treat a wider range of boney defects

    Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel'dovich Array

    Get PDF
    We report measurements of the Sunyaev-Zel'dovich (SZ) effect in three high-redshift (0.89 ≀ z ≀ 1.03), X-ray selected galaxy clusters. The observations were obtained at 30 GHz during the commissioning period of a new, eight-element interferometer—the Sunyaev-Zel'dovich Array (SZA)—built for dedicated SZ effect observations. The SZA observations are sensitive to angular scales larger than those subtended by the virial radii of the clusters. Assuming isothermality and hydrostatic equilibrium for the intracluster medium and gas-mass fractions consistent with those for clusters at moderate redshift, we calculate electron temperatures, gas masses, and total cluster masses from the SZ data. The SZ-derived masses, integrated approximately to the virial radii, are 1.9^(+0.5)_(-0.4) × 10^(14) M_☉ for Cl J1415.1+3612, 3.4^(+0.6)_(-0.5) × 10^(14) M_☉ for Cl J1429.0+4241, and 7.2^(+1.3)_(-0.9) × 10^(14) M_☉ for Cl J1226.9+3332. The SZ-derived quantities are in good agreement with the cluster properties derived from X-ray measurements

    Investigating the mechanism of acoustically activated uptake of drugs from Pluronic micelles

    Get PDF
    BACKGROUND: This paper examines the mechanism of ultrasonic enhanced drug delivery from Pluronic micelles. In previous publications by our group, fluorescently labeled Pluronic was shown to penetrate HL-60 cells with and without the action of ultrasound, while drug uptake was increased with the application of ultrasound. METHODS: In this study, the amount of uptake of two fluorescent probes, Lysosensor Green (a pH-sensitive probe) and Cell Tracker Orange CMTMR (a pH-independent probe), was measured in HL-60 and HeLa cells. RESULTS: The results of our experiments show that the increase in drug accumulation in the cells as a result of ultrasonication is not due to an increase in endocytosis due to ultrasonication. CONCLUSIONS: We hypothesize that sonoporation plays an important role in the acoustically activated drug delivery of chemotherapy drugs delivered from Pluronic micelles

    General Practice and Pandemic Influenza: A Framework for Planning and Comparison of Plans in Five Countries

    Get PDF
    BACKGROUND: Although primary health care, and in particular, general practice will be at the frontline in the response to pandemic influenza, there are no frameworks to guide systematic planning for this task or to appraise available plans for their relevance to general practice. We aimed to develop a framework that will facilitate planning for general practice, and used it to appraise pandemic plans from Australia, England, USA, New Zealand and Canada. METHODOLOGY/PRINCIPAL FINDINGS: We adapted the Haddon matrix to develop the framework, populating its cells through a multi-method study that incorporated the peer-reviewed and grey literature, interviews with general practitioners, practice nurses and senior decision-makers, and desktop simulation exercises. We used the framework to analyse 89 publicly-available jurisdictional plans at similar managerial levels in the five countries. The framework identifies four functional domains: clinical care for influenza and other needs, public health responsibilities, the internal environment and the macro-environment of general practice. No plan addressed all four domains. Most plans either ignored or were sketchy about non-influenza clinical needs, and about the contribution of general practice to public health beyond surveillance. Collaborations between general practices were addressed in few plans, and inter-relationships with the broader health system, even less frequently. CONCLUSIONS: This is the first study to provide a framework to guide general practice planning for pandemic influenza. The framework helped identify critical shortcomings in available plans. Engaging general practice effectively in planning is challenging, particularly where governance structures for primary health care are weak. We identify implications for practice and for research

    The Role of Cell Death in Germ Cell Migration

    No full text

    Community stakeholders and the perception of tourism downtowns:an assessment of brand identity

    No full text
    The purpose of this article is to examine the brand identity of tourism-dependent downtowns as perceived by stakeholders in the community. From the theoretical perspective of the resource-based view of the firm, perceptions of local residents and downtown business owners are considered in terms of how each group perceives the downtown’s brand. Specifically, this research seeks to identify and better understand differences in how these two groups attribute elements of the downtown’s brand identity to overall downtown performance. Hypotheses are developed and tested using data collected from residents and downtown business owners in four tourism-dependent communities in the Midwestern US. The results suggest that whereas business owners attribute downtown success to both brand image and positioning, brand image alone affects residents’ perceptions of downtown performance
    corecore