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Abstract

The cortex represents information across widely varying timescales1–5. For instance, sensory 

cortex encodes stimuli that fluctuate over few tens of milliseconds6,7, whereas in association 

cortex behavioral choices can require the maintenance of information over seconds8,9. However, it 

remains poorly understood if diverse timescales result mostly from features intrinsic to individual 

neurons or from neuronal population activity. This question is unanswered because the timescales 

of coding in populations of neurons have not been studied extensively, and population codes have 

not been compared systematically across cortical regions. Here we discovered that population 

codes can be essential to achieve long coding timescales. Furthermore, we found that the 

properties of population codes differ between sensory and association cortices. We compared 

coding for sensory stimuli and behavioral choices in auditory cortex (AC) and posterior parietal 

cortex (PPC) as mice performed a sound localization task. Auditory stimulus information was 

stronger in AC than in PPC, and both regions contained choice information. Although AC and 

PPC coded information by tiling in time neurons that were transiently informative for ~200 

milliseconds, the areas had major differences in functional coupling between neurons, measured as 

activity correlations that could not be explained by task events. Coupling among PPC neurons was 

strong and extended over long time lags, whereas coupling among AC neurons was weak and 

short-lived. Stronger coupling in PPC led to a population code with long timescales and a 

representation of choice that remained consistent for approximately one second. In contrast, AC 

had a code with rapid fluctuations in stimulus and choice information over hundreds of 

milliseconds. Our results reveal that population codes differ across cortex and that coupling is a 

variable property of cortical populations that affects the timescale of information coding and the 

accuracy of behavior.
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The goal of this work was to compare coding across cortical regions for two key features of 

behavioral tasks: stimulus and choice. We developed a sound localization task in which mice 

reported perceptual decisions by navigating through a visual virtual reality T-maze10 (Fig. 

1a). As mice ran down the T-stem, a sound cue was played from one of eight possible 

locations in head-centered, real-world coordinates. Mice reported whether the sound 

originated from their left or right by turning in that direction at the T-intersection (Fig. 1b–

c).

We focused on AC because it is necessary for sound localization tasks11 and on PPC 

because it is involved in spatial auditory processing12, receives inputs from AC, is a 

multisensory-motor interface8–10,13–17, and is essential for virtual-navigation tasks10. In 

each mouse, we imaged the activity of ~50 neurons simultaneously from AC and PPC on 

separate days. In both regions, neurons were transiently active at different time points, 

resulting in a population that tiled the trial (Fig. 1d–e). Activity in some AC neurons was 

selective for stimulus location; however, as a population, AC activity was heterogeneous and 

complex (Fig. 1d,f; Extended Data Fig. 1; Supplementary Information). In PPC, a 

substantial fraction of neurons had different activity on trials with opposite behavioral 

choices8–10,15–18 (Fig. 1f).

The heterogeneity of activity patterns suggested that, in addition to stimulus and choice, 

multiple task-related variables, such as visual inputs, reward delivery, and the mouse’s 

running, might affect neuronal responses. To take these variables into account and to help 

isolate signals related to stimulus and choice, we developed an encoding model (generalized 

linear model - GLM). This model incorporated all measured task-related variables as 

predictors of each neuron’s activity19,20 (Fig. 2a, Extended Data Fig. 2a–d). The model 

reliably predicted the time course and selectivity of single neuron activity in AC and PPC 

(Fig. 2b–c; Extended Data Fig. 2g).

To determine whether stimulus and choice information were present in AC and PPC, we 

decoded the most likely stimulus category (left or right location) or choice (left or right turn) 

from neuronal activity by using Bayes’ rule to invert the prediction of the encoding model 

(Fig. 2a). Because stimulus locations and choices were related to one another by task design 

(e.g. left stimuli required a left turn for reward), we decoupled these features and isolated 

information purely related to stimulus from information purely related to choice by selecting 

equal numbers of right and left choice trials for analysis in each stimulus condition (thus the 

same number of correct and error trials). Decoding performance was calculated as the 

mutual information between the decoded and actual stimulus category or choice.

Pure information about the stimulus category was present in AC activity but was weak in 

PPC (Fig. 2d). Information purely about the choice was present in both AC and PPC 

populations (Fig. 2e). Although the mouse’s running patterns that triggered turns in the 

virtual environment necessarily covaried with the choice at some trial time points, the choice 

information estimated by our decoding analysis was similar even when fully discounting the 

effects of running patterns (Extended Data Fig. 3g–i). AC and PPC thus likely contained 

genuine choice information. Additional analyses that did not decouple stimulus and choice 
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revealed that both regions had a relationship between neuronal tuning for stimulus and 

choice and contained information at the intersection between stimulus and choice21 

(Supplementary Information; Extended Data Fig. 3a–f, Extended Data Fig. 4a). The 

information present in both regions thus appeared to be used for performing the task.

We investigated the codes for stimulus and choice information first by examining activity in 

single neurons. In AC, we considered both stimulus and choice information, whereas, in 

PPC, we focused on choice information only because PPC contained little pure stimulus 

information. Stimulus and choice information were small but significant in individual 

neurons, on average, and only a minority of neurons had large stimulus or choice 

information (Extended Data Fig. 4b–j). In both areas, individual neurons were briefly 

informative, with subsets of largely distinct neurons providing information at different time 

points in a trial10,22 (Fig. 2f–k). Single cells in AC and PPC were informative about the 

choice for ~100 and 300 ms, respectively, and individual AC cells were informative about 

the stimulus category for ~280 ms (calculated as a two-sided decay around the information 

peak of each cell; Fig. 2i,k). Therefore, in most individual neurons, information was weak 

and short-lived relative to the length of trials.

We thus reasoned that population codes may be important in AC and PPC, in particular if 

long-duration and diverse timescales were present. To examine the structure of functional 

interactions in population activity18,23–27, we modified our encoding model to predict a 

given neuron’s activity based on the past activity of each of the other imaged neurons 

(“coupling predictors”; activity from up to ~2 s in the past, within defined lag ranges). These 

coupling predictors were included in a single model along with the task-related predictors 

described above20 (“task predictors”; Fig. 3a–c). Here “coupling” indicates functional 

interactions between neurons without necessarily implying a direct causal connection 

between them. We quantified how strongly a neuron was coupled with other neurons in the 

local population by computing a “coupling index”: the difference in performance between 

the models with and without coupling predictors divided by the coupled model performance. 

Higher coupling indices indicated that other neurons’ activity provided greater improvement 

in the prediction of a neuron’s moment-to-moment activity patterns beyond what could be 

modeled with task features alone. Coupling is conceptually similar to “noise” correlation23, 

but it discounts, on a trial-by-trial basis, effects arising from shared tuning to measured task 

events and includes all other simultaneously imaged neurons.

Strikingly, the activity of PPC neurons had nearly three times more contribution from near-

instantaneous coupling than did AC neurons, on average (coupling index: AC, 0.14 ± 0.02; 

PPC, 0.40 ± 0.02, p < 0.001, KS test; Fig. 3d). Coupling between PPC neurons was present 

even at lags in activity up to ~1.25 s (p < 0.001, signed-rank test; Fig. 3f). In contrast, AC 

coupling was weak at all lags (Fig. 3f). This difference in coupling was confirmed by 

calculating partial Pearson correlations for activity in neuron pairs (Extended Data Fig. 5). 

AC and PPC therefore had major differences in the structure of population activity, with 

higher coupling among neurons in PPC. In PPC, the time window of these interactions (> 1 

s) far exceeded the information timescale of single neurons (~0.3 s; Fig. 2k,3f).
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We tested whether coupling was due to global population changes28,29 or to coordinated 

activity in small neuronal groups30 by comparing the performance of variants of the coupled 

model. We compared coupled models that included as coupling predictors only the mean 

population activity or the activity of factorized subsets of cells. Global fluctuations in 

activity contributed in part to coupling, but the majority of coupling resulted from cell-to-

cell coupling or coupling to activity in small subsets of cells (Fig. 3e).

The major difference in coupling between PPC and AC neurons was present outside the task 

context, including during passive listening to auditory stimuli and periods without stimulus 

presentation or running behavior (Extended Data Fig. 5). Although we could not exclude 

potential contributions from unmeasured variables (e.g. whisking, pupil diameter), the 

coupling difference, including at long lags, appeared unlikely to result solely from responses 

to task events (Extended Data Fig. 2o, see also Extended Data Fig. 6).

In a population of neurons with transient activity that tiles a task trial, as we observed in AC 

and PPC (Fig. 1d–e,2f–h), coupling between neurons could extend the coding timescale 

beyond what can be achieved with independent neurons, by combining individual cell 

responses in a population code. For example, when the coupling between two PPC neurons 

extends to lags comparable to the temporal offset between the neurons’ activity, the resulting 

population signal lasts from the start of the first neuron’s activity to the end of the second 

neuron’s activity. The across-time activity dependencies revealed from time-lagged coupling 

suggest that stimulus or choice information signals should have consistency over the 

intervals at which these temporal dependencies occur. We therefore tested the hypothesis 

that coupling in a population might influence the temporal consistency of information 

encoded by the population.

To examine the temporal consistency of information, at each time point in a trial, we 

calculated the decoder posterior (i.e. the continuous-valued prediction of either the stimulus 

category or choice at that time point on a single trial) and computed the correlation between 

posterior values at different time points in a trial, for all possible intervals between time 

points (Fig. 4a–d). A high correlation in posterior values across long time intervals indicates 

high temporal consistency in information. In AC, for both stimulus and choice, the 

correlation between posterior values dropped rapidly as a function of the interval between 

time points. In contrast, for choice in PPC, the correlation between posterior values decayed 

more slowly and was high at long time intervals (Fig. 4c–e). In PPC, information 

consistency remained high for several hundred milliseconds longer than in AC (Fig. 4e, 

Extended Data Fig. 7; Supplementary Information). AC stimulus and choice signals thus 

fluctuated rapidly over time whereas PPC choice signals did not.

To quantify effects on information consistency at long timescales, such as those potentially 

related to time-lagged coupling, we fit the temporal decay of the posterior correlation with 

an exponential curve with two time constants (τ1 and τ2) and focused on the longer time 

constant (τ2). In agreement with higher temporal consistency and greater coupling at long 

time lags in PPC relative to AC, in PPC the long time constant had a larger magnitude and 

contributed more to the fit curve than in AC (coefficient for τ2: AC, 0.35 ± 0.02; PPC, 0.63 
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± 0.02, p < 0.001 z-test; Fig. 4f). Given the small contribution of long timescale effects in 

AC, going forward, we only considered information consistency in PPC choice signals.

We tested the relationship between coupling and information consistency by using an 

analysis approach to disrupt coupling while preserving single neuron activity patterns. We 

shuffled trial identities for each neuron independently within each set of trials with the same 

stimulus and choice, and again computed the population decoder posterior. When coupling 

was disrupted, the consistency of the choice signal in PPC was shorter (Fig. 4f). Consistent 

with a role of coupling, information consistency increased with the size of the neuronal 

population when coupling was intact, but not when coupling was disrupted by shuffling 

(Supplementary Information; Extended Data Fig. 8). Even after disrupting coupling, 

differences in consistency remained between AC and PPC, likely because of single neuron 

timescales (Fig. 2) and because shuffling cannot fully remove the effects of functional or 

anatomical coupling from single neuron responses (Methods). Long timescales of 

information coding in PPC therefore resulted in part from population-level interactions 

because, with coupling disrupted, information consistency was shorter by hundreds of 

milliseconds.

We examined if the timescale of coding within a region had variability that was related to the 

behavioral context. We compared periods of the trial before and after the mouse executed its 

behavioral report as a left or right turn. Pre-turn choice information has the potential to be 

causal for the upcoming behavioral report, whereas post-turn choice information does not. In 

AC, coupling was similarly weak during the pre- and post-turn periods. In contrast, in PPC, 

coupling was higher and the temporal consistency of choice information was longer during 

the pre-turn period than during the post-turn period (Fig. 4g–h). In agreement with the 

difference in coupling between these two periods, disrupting coupling by trial shuffling had 

a significant effect on PPC choice consistency only in the pre-turn period (Fig. 4h).

We also tested if the levels of coupling and consistency were related to the accuracy of 

behavioral choices. In AC, coupling was similarly weak during correct and error trials. In 

contrast, PPC coupling and choice information consistency were greater on correct trials 

than on error trials (Fig. 4i,j). Also, disrupting coupling with the trial shuffle shortened the 

timescale of choice consistency in correct trials but had little effect in error trials (Fig. 4j). 

PPC thus had strong coupling and temporally consistent choice signals on correct trials in 

the pre-turn period. On error trials and after a choice was reported, however, PPC had 

weaker coupling and consistency. Coupling and consistency therefore may be of importance 

for conveying signals relevant for accurate behavior.

Together our results reveal that despite short coding timescales in individual neurons, long 

timescales can emerge in neuronal populations. However, coding timescales were variable 

across cortex and depended on the structure of the population code. AC had relatively weak 

coupling and a short timescale (hundreds of milliseconds), which might aid representations 

of rapidly fluctuating stimuli and high dimensional sensory features. Previous studies have 

proposed that noise correlations can have a detrimental, information-limiting effect23,26,29 

and have thus suggested that sensory codes may benefit from weak coupling, which appears 

consistent with our findings in AC. However, in contrast, PPC had strong coupling and a 
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long population timescale (~1 s), which appear to have a beneficial effect because higher 

levels of coupling and temporal information consistency corresponded to accurate task 

performance. In PPC, coupling timescales could be long enough to combine temporally 

separate inputs and could result in higher instantaneous information due to information 

accumulation over time. We built a data-driven computational model that confirmed this 

effect of coupling (Supplementary Information; Extended Data Fig. 9). Further, from such a 

code, a downstream network could instantaneously read out a signal that contains consistent 

and accumulated information about the recent estimate of the appropriate choice. Our model 

showed how such a temporally consistent choice signal could improve behavioral accuracy 

(Supplementary Information; Extended Data Fig. 9). We propose that codes underlying 

sensory representations and choice signals might differ significantly and that the structure of 

population codes may be a defining characteristic of cortical regions that contributes to the 

computations performed in each area.

Methods

1.1 Mice

All experimental procedures were approved by the Harvard Medical School Institutional 

Animal Care and Use Committee and were performed in compliance with the Guide for 

Animal Care and Use of Laboratory Animals. Imaging data were collected from four male 

C57BL/6J mice (Jackson Labs) that were ~seven weeks old at the initiation of behavior task 

training.

1.2 Virtual Reality System

We used a modified version of the visual virtual reality system that has been described 

previously31. Head-restrained mice ran on a spherical treadmill. Forward/backward 

translation in the maze was controlled by treadmill changes in pitch (relative to the mouse’s 

body), and rotation in the virtual environment was controlled by roll of the treadmill 

(relative to the mouse’s body). Images were back-projected onto a half-cylindrical screen 

(24 inch diameter) using a picoprojector (Microvision, Inc.). Mazes were constructed using 

the Virtual Reality Mouse Engine (VirMEn32) in Matlab (Mathworks). Four electrostatic 

speakers (Tucker-Davis Technologies) were positioned in a semicircular array, centered on 

the mouse’s head. The speakers were positioned at −90, −30, +30, and +90 degrees in 

azimuth, with the speakers arranged from lateral to behind the mouse’s head (Fig. 1a). 

Speakers were calibrated to deliver similar sound levels (~70 dB, varying randomly by ± 5 

dB to further ensure that variations in sound level per se could not be used to complete the 

task) in a sound isolation chamber and at the location of the mouse’s head using a random 

incidence microphone (PCB Piezotronics Inc). External sounds were attenuated by lining the 

surfaces and surrounding walls of the behavior/imaging apparatus with sound foam.

1.3 Behavior Task

Prior to behavioral training, dental cement was used to attach a one-sided titanium head 

plate to the skull of a 6–8 week old mouse. Upon recovery, the mouse was put on a water 

schedule, receiving 0.8 mL of water in total per day. Body weight was monitored daily to 

ensure it was maintained above 80% of the pre-restriction measurement.
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In the final version of the task that was used during imaging experiments, mice ran down the 

stem of the virtual T-maze, judged the location of sound stimuli to be either on the left or 

right, and reported decisions by turning left or right at the T-intersection for water rewards (4 

µL/reward). The use of an auditory cue dissociated the sensory information necessary for the 

perceptual decision from the ongoing visual cues needed to navigate through the virtual 

environment. The stem of the maze had gray walls with stripes to provide optic flow to the 

running mouse; black towers with white dots were positioned in the left and right arms, 

strictly as visual landmarks for navigation purposes. The sound stimuli were 1–2 seconds 

long dynamic ripples33 (broadband stimuli that were created by summing 32 tones with 

carrier frequencies spaced across 2–32 kHz, that each fluctuated at 10–20 Hz). The stimuli 

were designed to activate many neurons in auditory cortex, independent of the sound 

frequency tuning of individual neurons, as the timescale of sound frequency fluctuations was 

faster than the timescale of imaging frames (16 Hz). Three different ripples were used 

during the task. Each trial used only a single ripple. However, the different ripples did not 

result in distinguishable activity patterns (p > 0.1 using a support vector machine classifier to 

identify the ripple type based on neuronal activity in AC). We therefore combined these 

trials together for analysis. The sound stimulus was activated when the mouse passed an 

invisible spatial threshold at ~10 cm into the T-stem and originated from one of eight 

possible locations. The stimulus was repeated after a 100 ms gap; repeats continued until the 

mouse reached the T-stem. Most trial durations allowed for three stimulus repeats. Naïve 

mice were trained to first run down straight virtual corridors of increasing length for water 

rewards, while a 10 kHz tone 20 ms in duration was delivered at increasing pulsing 

frequency (2–10 Hz) as the mouse approached the end of the maze. In the second stage, 

mice learned to use the most laterally positioned left (−90 deg) or right (+90 deg) cues 

(dynamic ripples, described above) to guide left or right turns in a T-maze. When 

performance exceeded 75% correct, additional sound locations were gradually added on a 

session-by-session basis, until all eight sound location conditions were included. Four sound 

locations corresponded to the locations of the four speakers, while four additional virtual 

sound locations at −60, −15, +15, and +60 degrees were simulated using vector base 

intensity panning, where the same sound stimulus was delivered to two neighboring speakers 

simultaneously, scaled by a gain factor34. While the total sound level at the mouse’s ear was 

calibrated for all eight locations, the sound level of the stimulus was changed randomly 

between trials, so that potential slight variations in sound level between locations could not 

be used as a cue to complete the task.

Sound location conditions were randomly selected, except that the most difficult sound 

location conditions (±15 deg) were presented half as often as the other sound location 

conditions. A “reward tone” was played as the water reward was delivered on correct trials 

(when the mouse had reached ~10 cm into the correct arm of the T-maze), and a “no reward 

tone” was played when the mouse reached ~10 cm into the incorrect arm on error trials. The 

inter-trial interval was 3 s on correct trials and 5 s on error trials. Mice performed 200–300 

trials in a typical session over approximately 45–60 minutes. Mice were able to perform the 

task interchangeably on two different behavioral set-ups with different sets of speakers, 

indicating that it was unlikely that mice used a non-location sound stimulus variable, such as 

differential timbre of the individual speakers, to perform the task.
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1.4 Passive Listening and ‘No Task/Stimulus’ Activity Contexts

After the behavior task session, the virtual reality display was turned off, and imaging 

continued as sound stimuli were presented to the mouse. Stimulus sets included frequency 

filtered and shifted natural sounds (sourced from Cornell Lab of Ornithology), sinusoidally 

amplitude modulated (SAM) pure tones (10 Hz modulation)35, and the location-dependent 

dynamic ripple stimulus set used during the task, all calibrated to sound levels at 70 dB. 

Stimuli were generated, attenuated, and delivered in Matlab at 192 kHz sampling 

frequencies (National Instruments, PCI-6229). The same cells were imaged as in the 

behavioral task. Presentations of the sets of SAM tones, natural sounds, and sound location 

stimuli were interleaved with 5-minute periods of data acquisitions with no stimulus 

presentation (“No Task/Stimulus”). Mice mostly ran on the treadmill during this time, but 

also spent time resting.

1.5 Surgery

When mice reliably performed the full version of the task, the cranial window implant 

surgery was performed. Mice were given free access to water for three days prior to the 

surgery. Twelve to 24 hours prior to the surgery, mice were given two doses of 

dexamethasone (2 µg/g). For the surgery, the mouse was anesthetized with 1.5% isoflurane. 

The head plate was removed, and elliptical craniotomies were performed over AC and PPC 

on the left hemisphere (PPC centered at 2 mm posterior and 1.75 mm lateral to bregma; AC 

centered at 3.0 mm posterior and 4.3 mm lateral to bregma). A 10:1 viral mixture of 

tdTomato (AAV2/1-CAG-tdTomato) to GCaMP6 (AAV2/1-synapsin-1-GCaMP6f) or 

GCaMP6 alone was injected at 3–6 evenly spaced locations along the anterior-posterior axis 

of AC, and three injections spaced 200 µm apart were made in the center of PPC. A 

micromanipulator (Sutter, MP285) moved a glass pipette to ~250 µm below the dura at each 

site, and a volume of approximately 30 nL was pressure-injected over 5–10 minutes. Dental 

cement sealed a glass coverslip (3 mm diameter) over a drop of Kwik Sil (World Precision 

Instruments) on the craniotomy, and a new head plate was implanted, along with a rubber 

ring, to interface with a black rubber objective collar to isolate fluorescence photons from 

those generated by the VR system. Mice recovered for 2–3 days after surgery before being 

placed back on the water schedule. Imaging was performed daily in each mouse, starting 4–6 

weeks after surgery and continued for 4–12 weeks.

1.6 Two-photon Imaging

Images were acquired using a two-photon microscope (Sutter MOM) at 15.6 Hz frame rate 

and 256 × 64 pixel resolution (~250 × 100 µm) through a 40× magnification water 

immersion lens (Olympus, NA 0.8). On alternating days, either AC or PPC was imaged, at a 

depth of 150–300 µm, corresponding to layers 2/3. For AC imaging, the objective was 

rotated to ~35–40 degrees from vertical, and for PPC imaging, it was rotated to ~5–10 

degrees from vertical. Each field of view contained ~40–70 neurons. A Ti-sapphire laser 

(Coherent) tuned to 920 nm delivered excitation light. Emitted light was isolated using a 

dichroic mirror (562 nm longpass) and green (525/50 nm) and red (609/57 nm) bandpass 

filters (Semrock). ScanImage (version 3, Vidrio Technologies) was used to control the 

microscope. Outputs controlling the galvanometers and the audio speakers, along with an 

Runyan et al. Page 8

Nature. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



iteration counter from ViRMEn, were collected by a digital interface (Digidata, Molecular 

Devices), allowing offline alignment of imaging frames to behavior events.

2.1 Data processing

Imaging datasets from seven AC fields of view and seven PPC fields of view were included 

from five mice. Movies of imaging frames collected during the task, passive listening, and 

“no task/stimulus” activity contexts were concatenated for motion correction, cell body 

identification, and deconvolution. Briefly, following motion correction36, correlations in 

fluorescence activity time series between pixels within ~60 µm were calculated. 

Fluorescence sources (putative cells) were identified by applying a continuous-valued 

eigenvector-based approximation of the normalized cuts objective to the correlation matrix, 

followed by k-means clustering, yielding binary masks for all identifiable fluorescence 

sources. Only datasets with at least 35 cells were included for further analysis. To estimate 

potential neuropil contamination, we regressed the cell body fluorescence signal against 

signal from surrounding pixels during time points when the cell of interest was not active 

and used a robust-regression algorithm, and then removed neuropil contamination during the 

(F – Fbaseline)/Fbaseline calculation by subtracting a scaled version of the neuropil signal from 

the cell body signal. Fbaseline was the 8th percentile spanning 500 frames (~30 s) around each 

frame. Matlab scripts implementing these custom algorithms are available online (https://

github.com/HarveyLab/Acquisition2P_class.git) or upon request. Fluorescence traces were 

deconvolved to estimate the relative spike rate in each imaging frame37, and all subsequent 

analyses were performed on the estimated relative spike rate to reduce the effects of 

GCaMP6f signal decay kinetics. Because this estimate is the spike rate relative to baseline 

activity, without perfect knowledge of the fluorescence change associated with a single 

spike, we report the estimated relative spike rate with arbitrary units (au; personal 

communication from Joshua Vogelstein, Johns Hopkins University).

For visualization and for decoding analyses, data were temporally aligned to either the 

sound onset (for stimulus-related analyses) or the moment of the turn, defined by when the 

mouse entered the short arm of the maze (for choice-related analyses).

2.2 Data Inclusion Criteria

To be included for further analysis, mouse performance during the imaging session had to 

exceed 65% correct, to ensure that mice were performing the task well above chance (50%), 

but had to be lower than 80% correct, as our analyses required a significant number of error 

trials to decouple stimulus and choice. Each field-of-view was required to contain at least 35 

identified cells. Coupling was estimated in datasets with fewer neurons (not shown), and 

results were similar to those reported here. Finally, AC fields-of-view had to contain sound 

frequency selective neurons with preferences in the sub-ultrasonic range for further analysis, 

to ensure that we were imaging in tonotopic AC.

3.1 Generalized Linear Model (Encoding Model)

Our encoding model extended the approach taken by Pillow and colleagues19,20 to calcium 

imaging data recorded in populations of neurons in a behaving animal. It allowed us to 

model for single neurons the time-dependent effects of all measured variables related to the 
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task and the animal’s behavior simultaneously on neuronal activity during single trials. 

Simpler approaches that regress the spike rates of individual neurons against the values of 

only a few variables of interest (e.g. choice or stimulus only) have been useful in tasks 

involving fewer variables and with task timing determined by the experimenter. However, in 

our case, mice controlled trial timing with their own running speed and could change their 

view of the virtual reality environment by running laterally. We therefore took the approach 

of trying to explain trial-trial variability due to differences in the timing of stimuli or 

differences in behavioral variables like running speed across trials. Here our model took into 

account many features that described the mouse’s sensory environment (auditory and visual) 

and behavioral actions (such as running movements).

We used a Bernoulli Generalized Linear Model (GLM) to weight task variables (task 

predictors, uncoupled model, Fig. 2a) or task variables and activity of other neurons 

(coupling predictors, coupled model, Fig. 2a) in predicting each neuron’s binarized activity 

(time series of relative spike rates were converted to vectors of ones and zeroes – different 

thresholds for activity were compared, but did not change the results, so all nonzero relative 

spike rates were set to one). The Bernoulli model was primarily selected as, due to the 

sparseness of the recorded activity, the most prominent feature of the data was whether any 

signal was present at a given time. Poisson and multinomial versions of the GLM were also 

built and tested, and yielded qualitatively similar fits and information estimates.

3.2 Uncoupled Model Predictors

Task-related predictors, measured at higher time resolution than the imaging, were binned by 

averaging as necessary to match the sampling rate of imaging frames (15.6 Hz). The 

behavior variables included the running velocity on the pitch and roll axes of the treadmill 

(relative to the mouse’s body axis), x- and y- position in the virtual maze, onset times and 

locations of sound stimuli, mouse’s virtual view angle in the maze, turn direction (choice), 

and reward and error signal delivery times (Extended Data Fig. 2). Sound stimulus and 

reward/error events were represented as boxcar functions that were set to a value of one at 

the time of onset and zero everywhere else. Predictors were convolved with behaviorally 

appropriate sets of basis functions (evenly spaced Gaussian kernels), to produce the task 

predictors (Extended Fig. 2b). This allowed us to fit time-dependent modulation of neuron 

responses by the task predictors, as follows.

For sound stimulus onsets at each of the eight possible sound locations, 12 evenly spaced 

Gaussian basis functions (170 ms half-width at half-height), extended two seconds forward 

in time from each sound onset. First, second, and third repeats were represented separately 

because of the adaptation-related effects we report in AC neuron responses during the task 

and passive listening contexts (Extended Data Fig. 1). This resulted in 12 basis functions per 

repeat per sound location × 3 repeats × 8 locations for 288 sound predictors. Reward and 

error delivery times were convolved on separate channels with four Gaussians (500 ms half-

width at half-height), and extended two seconds forward in time from reward/error signal 

onset times (8 basis functions in total for reward and error). Examples of the types of basis 

functions used for events such as sound and reward delivery are shown in Extended Data 

Fig. 2c.
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Running velocity measurements were separated into four channels: 1) forward, 2) reverse, 3) 

left, and 4) right directions, based on rotations of the treadmill about the pitch and roll axes, 

relative to the mouse’s body axis. Running speed changes could be either responded to or 

anticipated by neuronal activity, and so running velocity time series were convolved with 

four evenly spaced Gaussian basis functions (240 ms half-width at half-height) extending 

one second both forward and backward in time (8 bases total for each running direction: 

forward, reverse, left, and right; Extended Data Fig. 2b; 32 basis functions in total for 

running predictors). Virtual reality view angle changes were modeled similarly, by two 

channels: 1) leftward and 2) rightward directions. Each channel was convolved with three 

evenly spaced Gaussian basis functions extending in the forward and reverse time directions 

(half-width at half height, 320 ms; 12 total basis functions for view angle)

Upcoming left and right choices were represented on separate channels by two types of basis 

functions: 1) 30 evenly spaced Gaussian “place fields” (half-width at half-height: 1/10 of the 

total maze length) along the stem of the T-maze (Extended Data Fig. 2d) preceding the turn, 

and 2) by nine evenly spaced Gaussian temporal basis functions extending four seconds 

forward in time (440 ms half-width at half-height) from the turn (behavioral choice), defined 

by when the mouse turned into the short arm of the maze. In total, left and right turns were 

convolved with 78 basis functions.

For convenience, all predictors were normalized to their maximum values before being fed 

into the model. The total number of predictors in the uncoupled model was 419 (420 if 

counting the constant predictor which corresponded to the average activation probability of 

each individual cell). The basis functions for each behavioral variable were selected to 

optimally predict responses of simulated neurons with simple tuning to that variable, with 

response properties similar to those that we observed in our AC and PPC datasets. We 

optimized the sound onset predictors by simulating neurons with sound location-selective 

responses with different response latencies, as we observed in AC (Extended Data Fig. 1). 

For example, we defined a neuron that would respond only when a sound was played from 

the −90 degrees location with a latency of 100 ms, on the first sound repeat, and used the 

actual behavior data collected during imaging experiments to simulate the timing and 

response magnitude of such a neuron, with added Poisson noise. The number, width, and 

spacing of basis functions was then systematically varied until the model performance was 

maximized in predicting this simulated neuron’s response. We repeated this procedure for 

neurons responding with higher magnitude to later stimulus repeats (like the neuron in 

Extended Data Fig. 1h), with more broad sound location tuning (i.e. responding to all sound 

locations, to only locations 0 to +90 degrees, or to −45 to +45 degrees) and for neurons with 

a diversity of sound onset/offset latency responses. Furthermore, we examined the beta 

coefficients in these model fits to ensure that weights were not aberrantly assigned to non-

sound-related predictors.

We optimized the basis functions for other variables using similar methods, simulating 

neurons selective for running speed, spatial position in the maze, reward or error timing, 

view angle, and turn direction (behavioral choice). We found that combining the predictors 

for upcoming turn direction and maze position was the optimal solution, to produce two sets 

of “place fields” for upcoming left and right turns. These predictors were able to account for 
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the type of responses we observed in PPC neurons (choice-selective neurons tended to 

respond at particular maze positions rather than at particular times in the trial). Furthermore, 

we observed that these spatial turn predictors prevented contamination of sound-selective 

and turn-selective predictor weights in the model fits.

3.3 Coupled Model Predictors

In order to compare the dependence of each neuron’s activity on external behavioral 

correlates (uncoupled model) and the activity of other neurons in the local population, we 

developed a coupled version of the model, where the activity of other neurons was also 

included as predictors in the GLM (coupled predictors, Fig. 2a). By comparing the 

additional fraction of explained deviance38 (see below) beyond the uncoupled model’s 

fraction of explained deviance, we could quantify the level of coupling of each neuron with 

other neurons, while also taking into account behavioral correlates that may commonly drive 

neurons within the population. This comparison is related to the measure of noise 

correlations, which attempts to measure the correlated variability of responses after 

subtracting the averaged response to repeated stimulus presentations (“signal correlations”). 

The advantage of this GLM approach is that on a single trial basis, our model accounts for 

variability in the timing and magnitude of behavioral and stimulus-related predictors 

simultaneously. Furthermore, by including all simultaneously imaged neurons, the model 

can reveal some interactions of higher order, which is not possible with pairwise noise 

correlation measurements20.

For a given neuron being fit, the relative spike rate of each other neuron and the population 

mean (excluding the cell being fitted) was convolved with two boxcar functions extending 

~120 ms forward in time from predictor neurons’ activity (each boxcar was nonzero for only 

a single imaging frame, or ~60 ms). To test for the presence of coupling across longer lags, 

four evenly spaced coupling basis functions (as above, each a boxcar function that was 

nonzero for a single imaging frame) were built at lags that were shifted successively farther 

from zero for different versions of the model (Fig. 3f).

Versions of the coupled model that included only the population mean, factorizations of the 

population activity selected via non-negative matrix factorization (NMF), or the full 

population of individual neurons were compared (Fig. 4e). NMF was preferred over other 

dimensionality reduction techniques, such as Principal Component Analysis (PCA), as it 

provides a decomposition that can be naturally interpreted as a sum of parts39 – in this case, 

contributions from partially overlapping neuronal subpopulations. NMF was computed by 

running the “nmf” MATLAB function on the full time series of neurons in the population, 

excluding the neuron being fit.

3.4 GLM fitting procedure

All predictors were max-normalized, for convenience, and z-scored prior to the fitting 

procedure. We fit the GLMs to each single neuron’s activity individually, using the glmnet 

package in R40 with elastic-net, which smoothly interpolates between L1 and L2 type 

regularization according to the value of an interpolation parameter α, such that α = 0 

corresponds to L2 and α = 1 to L1. We selected α = 0.95, allowing for a relatively small 
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number of useful predictors to be selected by the model out of a large number of potentially 

correlated predictors as in pure L1 regularization, while at the same time avoiding issues 

with degeneracies that can arise if the correlations between predictors are very strong40. 

Additional penalty factors (×10) were applied to the coupling predictors to reduce the 

number of selected coupling predictors to the smallest number necessary to increase model 

performance20. The value of the shrinkage parameter for the elastic net was chosen by three-

fold cross validation on the training data.

Within the training dataset (70% of trials), cross-validation folds were pre-selected so that 

trials with specific combinations of sound locations and choices were evenly divided among 

them. For instance, if there were 30 trials containing sound location +90 degrees and left 

choice by the animal, 10 trials were randomly selected for each cross-validation fold. The 

test dataset (30% of trials), also containing a similar distribution of trial conditions, was left 

out of the fitting procedure entirely, and was used only for testing the model performance. 

Each model was thus fit and tested on entirely separate data, removing over-fitting concerns. 

This train and test procedure was repeated 10 times, with random subsamples of the data 

included in train and test segments.

3.5 GLM model performance

Model performance was quantified by computing the fraction of explained deviance41 of the 

model. In addition to the full coupled and uncoupled models, we also fit a null model to each 

cell’s activity. In the null model, only a constant (single parameter) was used to fit the 

neuron’s activity and no time-varying behavior or coupling predictors were included as 

predictors. We calculated the deviance of the null, uncoupled, and coupled models, and then 

for the coupled and uncoupled models, calculated the fraction of null model deviance 

explained by the model ([Null deviance – Model deviance]/Null deviance). Deviance 

calculations were performed on a test data set (30% of the data), which had not been 

included in the fitting procedure, and this train/test procedure was repeated 10 times on 

randomly subsampled segments of the data.

By comparing the model performance (fraction of explained deviance) in the coupled model 

to the performance of the uncoupled model, we could estimate the level of correlation 

between a given neuron and the neurons in the simultaneously imaged population. Only 

neurons for which the overall GLM performance gave a fraction of deviance explained 

above 0.1 were included in this analysis, to avoid the lowest quality fits (the major results 

were present regardless of the threshold applied). The “coupling index” compared the 

improvement in model performance when adding coupling, for each neuron:

(Eq. 1)

where dc is the fraction of deviance explained in the coupled model and du is the fraction of 

deviance explained in the uncoupled model (Fig. 3d). Although the coupled model included 

more predictors than the uncoupled model, over-fitting was prevented by testing the model 

on the 30% of data points (test set) that were completely left out of the 3-fold cross validated 
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fitting procedure. A coupling index of 1.0 indicated that all of the explained deviance came 

from the coupled predictors, while values approaching 0 indicated that more deviance was 

explained by the uncoupled (behavior) predictors. The coupling index was calculated for 

each of the 10 random train/test subsamples, and the average across these 10 calculations is 

reported for each individual neuron.

3.6 GLM model performance in passive listening and “no task/stimulus” activity contexts

To help rule out the possibility that coupling parameters simply allow the model to explain 

behavioral correlates not included in the uncoupled model, rather than neuron-neuron 

correlations, we measured coupling in other behavioral contexts, where behavioral variables 

and external stimuli were either not present or organized differently (Extended Data Fig. 5). 

Briefly, the model was trained and tested on 70% and 30% of data, respectively, and this 

subsample was repeated 10 times on random segments of the data within each context. The 

coupling index was calculated as above.

3.7 Cell-Cell Model: GLM model performance with no behavioral predictors

We used an additional approach to test if the GLM might misattribute correlates due to 

common drive from behavioral variables to the coupling predictors, where measured 

coupling might reflect signal correlations either to modeled or un-modeled behavioral 

variables. To estimate the upper limit U to which this might occur, we compared the 

performance of a version of the GLM that included only the coupling predictors (Cell-Cell 

Model) to the improvement in model performance achieved by adding the coupling 

predictors to the uncoupled model:

(Eq. 2)

where dcxc is the fraction of deviance explained of the cell-cell model, dc is the fraction of 

deviance explained of the coupled model, and du is the fraction of deviance explained of the 

uncoupled model (Fig. 4b–c; Extended Data Fig. 6). We reasoned that in the cell-cell model 

the behavioral variables that we know explain AC and PPC activity well could bleed through 

into the coupling predictors because of neurons’ signal correlations. In this case, the fraction 

of deviance explained for the cell-cell model is expected to be much larger than the coupling 

value obtained from comparing the coupled and uncoupled models because the cell-cell 

model’s value would include both coupling and behavioral variable bleed through. In 

contrast, if the cell-cell model’s performance was similar to the value of coupling from the 

coupled-uncoupled model comparison, then it is unlikely that the behavioral variables could 

bleed through into the coupling predictors.

We compared the distribution of coupling (dc − du) measured in AC and PPC to the 

difference in the cell-cell model performance and coupling (U, Extended Data Fig. 6c), 

finding that coupling in AC neurons was restricted to values below this estimate of the upper 

bound on coupling explainable by task-related variables, while coupling in many PPC 

neurons exceeded this upper bound. We concluded from this analysis that not all coupling in 

PPC neurons can be explained by common drive by the measured behavioral variables. In 
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addition, we consider this estimate to be a likely large over-estimate of the contribution from 

un-modeled behavioral variables because the modeled behavioral features (sound stimuli, 

choice, running patterns) are expected to be the best behavioral correlates of AC and PPC 

activity.

3.8 Partial Pearson Correlation

Partial Pearson correlations were computed between all pairs of simultaneously recorded 

neurons as follows. For each pair of neurons, and for all available time point pairs (each time 

point corresponding to one imaging frame, or ~60 ms) within trials of the same stimulus 

category and choice condition, the partial Pearson correlation between the activity of the 

neurons was computed, discounting the effect of lateral running speed (Matlab function 

‘partialcorr’). Time point pairs were then sorted by their difference (lag), and partial 

correlations for those with the same lag were averaged together. For each lag, the four partial 

correlations measured for each neuron pair (two stimulus categories by two choices) were 

then averaged, weighting by the number of trials in each condition.

In the passive and “no task/stimulus” behavioral contexts, partial Pearson correlations were 

computed as follows. For each pair of simultaneously recorded neurons and for each trial, 

the partial Pearson correlation between the activity of the neurons within that trial was 

computed, discounting the effect of the lateral running speed. The partial correlations were 

then averaged across trials, yielding the final estimate for the partial Pearson correlation of 

the neuron pair. Since by experimental design each stimulus location in the passive context 

had the same number of trials and each trial had the same length, this was equivalent to 

computing the partial correlations separately for each stimulus location or category and then 

averaging across locations or categories. Note also that the “no task/stimulus” behavioural 

context only had one trial for each experimental session.

In the “no task/stimulus” context, we also computed Pearson correlations between pairs of 

simultaneously recorded neurons during periods where the mouse was stationary on the ball. 

In this case, correlations were computed as above, but without discounting running speed.

4.1 Decoder

In order to estimate the information represented in AC and PPC about the sound stimulus or 

the behavioral choice, we built a decoder that used the recorded cell responses to estimate 

the probability of each stimulus or choice condition on single trials. Our encoding model 

(GLM, see above) lent itself naturally to act as the core of the decoder (Figure 2a). We 

decoded either stimulus or choice from single-trial population activity (population decoder) 

or from single-trial activity of individual neurons (single cell decoder) by computing the 

probability of external variables given population or single neuron activity using Bayes’ 

theorem and population or single neuron response probabilities estimated through the 

uncoupled GLM and its predictors in that particular trial. Note that, because the encoding 

model took all measured behavioral variables into account, these predicted responses 

reflected trial-to-trial differences in running speed or VR view angle in addition to the 

stimulus and choice conditions. However, since we decoded only sound category or choice, 
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we integrated away the effect of all behavioral variables other than choice and stimulus 

category, as detailed in the following.

We first explain the instantaneous decoder that predicts stimulus or choice based on the 

observation of an instantaneous population response (“instantaneous” meaning during one 

imaging frame, ~60 ms) r(t) = {r1(t), …, rN(t)} made of the activation ri(t) of cell i (i=1,…,n) 

at time frame t. Call the variable to be decoded v, with ν = left,right meaning either 

presented stimulus (sound in the left or right part of the space) or behavioral choice (left or 

right choice, respectively). Call x the time courses of the GLM predictors that, by design, 

completely specify ν, such that ν can be thought of as a simple function ν = ν(x): if ν is 

choice, x is the time course of the “upcoming left and right choice” predictors, and if ν is 

presented stimulus, x is the time course of the indicator functions representing the presence 

of sound in the 8 speakers (see Extended Data Figure 2). Call x̃ the time courses of the other 

task variables (e.g. running speed). With this convention, the probability of observing a 

neural activation ri(t) of cell i at time frame t can be compactly written as pi(ri(t)|x,x̃). For 

each trial in the training set, we computed all probabilities pi(ri(t)|x,x̃) from the predictors of 

the uncoupled GLM in that trial. Assuming cell activities to be conditionally independent 

given the predictors, we then computed the probability of observing a population activity r(t) 
= {r1(t), …, rN(t)} as follows:

(Eq. 3)

The instantaneous Bayesian decoder then inverted this probabilistic model using Bayes’ 

theorem to compute the posterior probability p(x|r(t)) of observing each possible value of x 
by multiplying p(r(t)|x,x̃) by the prior probability p(x,x̃) of each combination of behavioral 

variables and then integrating over the dummy variables x̃ that we did not use in decoding, 

as follows:

(Eq 4)

where the prior distribution p(x,x̃) was taken to assign equal probability to each instance 

(x,x̃) that was observed in the training data and was zero for any other combination of 

behavioral variables that was never observed in the training data. The above integration over 

dummy variables is sufficient, even taking into account the possibly sparse sampling of the 

dummy variables due to the limited number of trials, for our principal purpose, which was to 

ensure that these variables cannot contribute spurious information about the variable x when 

decoding the most likely variable of x from Eq. 4. The decoded variable ν̂ at time t was 

finally selected as the one whose corresponding values of x had the maximum posterior 

probability (maximum a posteriori decoding):
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(Eq 5)

To make a concrete example, to decode the stimulus presented to the animal in a given trial 

at time t we partitioned the training data in trials where the sound was on the left (sound 

locations number 1, 2, 3, and 4, i.e. all those instances of ν such that ν(x) = left) and trials 

where the sound was on the right (sound locations number 5, 6, 7, and 8, corresponding to 

ν(x) = right). We then computed the likelihood of the observed activity r(t) with respect to 

the time courses of the predictors in all training trials, and we summed the likelihood for 

each trial set (stimulus=left and stimulus=right). We then compared the two values obtained, 

and we decoded left if the value for the subset of trials with stimulus on the left was the 

highest, and right otherwise.

The cumulative decoder was defined in an analogous fashion, but operated (rather than on 

the instantaneous responses and their probability as in Eq 1) on the time ensemble of single 

trial population responses r(1), …, r(t) computed on a whole set of time frames from a 

starting time frame 1 to time frame t. The probability pc(r(1), …, r(t)|x,x̃) of the single trial 

population responses in this time ensemble was computed assuming conditional 

independence of cell activity across time given the behavioral variables:

(Eq 6)

We note that we tried very extensively to decode using variations of GLM models that 

included coupling parameters between cells20, but these more parameter-rich probability 

models did not increase the amount of information decoded about choice or stimulus in AC 

or PPC, even though the coupled encoding model explained more trial-to-trial variability 

than the uncoupled model did (Fig. 3). The results presented here can be thus considered as 

fully cross-validated lower bounds to the total information about stimulus or choice that 

could be extracted from neural responses, and (although we could not find a better 

performing decoding model) we cannot exclude that more information could be extracted 

with more refined models.

4.2 Estimation of Information about Stimulus or Choice

For each imaging session, the experimental data was randomly split in equally sized training 

and testing datasets, ensuring stratification of sound location and choice combinations. The 

GLM was fitted on the training set as detailed above (GLM model fitting procedure). All 

data were temporally aligned to the sound onset (for stimulus decoding) or the moment of 

the turn, defined by when the mouse entered the short arm of the maze (for choice 

decoding). Stimulus and choice were decorrelated in training and testing data by randomly 

subsampling the available trials so that each combination of stimulus and choice (i.e. left 
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stimulus, left choice; left stimulus, right choice; etc.) was equally represented. There were 

on average 7.2 ± 2.3 (mean ± sem) trials per condition, with a minimum of 4 trials for any 

condition, and this random subsampling was repeated 20 times. This decorrelation ensured 

that we could isolate pure information about choice from pure information about stimulus. 

This isolation was useful to ensure than any difference in the resulting timescales of these 

signals would not be canceled out by the possible mixing of these two signals. The GLM 

probability model was used to decode stimulus or choice on the test dataset using the 

Bayesian decoder outlined above. Only a randomly selected subpopulation of 37 cells was 

used for decoding to control for the size variability of the populations recorded, as this was 

the minimum population size across imaging sessions. The information about stimulus or 

choice decoded from neural population activity was computed as the mutual information 

between the real value ν of the variable and the one ν̂ decoded from neural activity, as 

follows42,43:

(Eq 7)

The limited-sampling bias in the information estimate was corrected for by subtracting the 

analytical estimate of the bias44. This splitting-subsampling-decoding procedure was 

repeated 9600 times (10 train/test splits, 20 subsamplings for each train/test split, 48 

subsamplings of the neural population), and the information estimates were averaged 

together to yield the final result for each imaging session.

Overall, this method allowed us to quantify information on an absolute scale (in bits), 

enabling comparisons between different decoders (for example, instantaneous vs 

cumulative). Furthermore, the decoding framework provided a natural way of relating the 

instantaneous and the cumulative decoders, and of bridging single-cell and population levels, 

by the conditional independence assumptions in Eq. 3 and Eq. 6. We note that all this would 

have not been the case with other approaches based on the encoding model only, such as an 

analysis of the distribution of the fitted GLM parameters.

5.1 Shuffling procedure to disrupt neuron-neuron correlations

In order to assess the effects of coupling between neurons on information coding and 

timescales, we shuffled trials using a method that disrupted functional coupling while 

maintaining activity time courses in individual cells. Within subsets of trials of the same 

behavioral choice and stimulus (e.g. sound location = −90° and left choice or sound location 

= −90° and right choice for the data in Fig. 4), we shuffled the identities of trials for each 

neuron independently. In practice, shuffling trial identities meant shuffling single-neuron 

recorded activities across trials in the testing set and single-neuron activation probabilities 

pi(ri(t)|x,x̃) (see above, “Decoder”, 4.1) across trials in the training set. Thus, on average, 

neurons’ responses to the stimulus or choice condition were maintained (signal correlation), 

while coupling (noise correlations) among neurons were disrupted (and note that this did not 

affect the correlations between the predictors x,x̃ from the point of view of each single-cell 

GLM). Importantly, the single neuron autocorrelations were maintained in the shuffled 
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condition (as shuffling did not alter the time course of single-cell activities or predictions), 

and so the contribution of coupling could be distinguished from the contribution of single 

neuron timescales and the tiling of single neurons’ activity across time to information 

coding.

The shuffling procedure could not remove all effects of coupling. The shuffle effectively 

removed across-trial co-variations in activity between neurons. However, because the shuffle 

was performed in analysis, rather than through an experimental disruption of correlations, it 

is likely that some effects of coupling remained in each single neuron’s recorded activity. 

For example, imagine the case in which there is a transient external input to a network at 

time t = 0. In the absence of coupling, all cells will stop responding within a short time (e.g. 

by t = 1) depending on the single neuron timescale. However, in the presence of coupling, 

the population can follow an informative, seconds-long trajectory with different cells active 

at different times. As a result of coupling, each neuron could potentially be active after t = 1. 

The shuffle would be unable to remove this extended timescale that is present in the 

measured activity of individual neurons due to coupling. Shuffling therefore is effective at 

removing patterns of coupling in the population, but it does not modify any individual cell’s 

activity and thus cannot remove all effects of coupling. Our disruption of coupling by 

shuffling is therefore likely an underestimate of how much population interactions contribute 

to the timescales of coding.

Unlike the stimulus location category or choice, the time courses of other task predictors 

could vary differently from trial to trial. To ensure that disruptions of the effects of task 

predictors in the trial shuffling procedure could not account for the differences in 

consistency or population activity dynamics between real and shuffled data, we compared 

the variability of running speed and maze position for each time point across the trial 

between correct and error trials and time points pre- and post- choice. The variability did not 

differ between trial types, but was significantly higher post-choice than pre-choice (p < 

0.001; rank sum test); thus, the effects of shuffling trials on consistency are not due to 

disruptions in task predictors, as we would expect a greater effect of shuffling on 

consistency post-choice if that were the case.

6.1 Decoder posterior consistency

For each experimental trial, the instantaneous posterior probability p(ν|r(t)) = Σx:ν(x)=ν′ p(x|

r(t)) was computed as described above for the real value of the variable to be decoded (e.g. 

p(left|r(t)) = Σx:ν(x)=left p(x|r(t)) if decoding choice on a trial where the animal chose to go 

left) and averaged across all train/test splits and subsamplings. To capture the consistency 

over time of the decoder posterior, the Pearson correlation coefficient between the average 

posterior probabilities at all available time point pairs was computed. Time point pairs were 

then sorted by their difference (lag), and posterior correlations for the pairs with the same 

lag were finally averaged together to yield the consistency measure for each imaging session 

at each time point. All sessions were then averaged together, giving the values shown in 

Figure 4c–d. For the analysis of shuffled data consistency, the activity of each cell was 

shuffled randomly among all trials with the same sound location and the same choice (see 

Shuffling procedure, 5.1).
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Average posterior correlation was computed for all lags between 0 and 2 s. The dependence 

of the average posterior correlation on the time lag was fit with single and double-

exponential decay functions, defined as y(t) = exp(−t/τ) and y(t) = a exp(−t/τ1) + (1−a) 

exp(−t/τ2) respectively, using a nonlinear least-squares procedure (MATLAB’s lsqnonlin 

function), and the Bayesian Information Criterion selected the double exponential fit for all 

conditions considered. Confidence bounds on the fit parameters were derived from the 

Jacobian of the exponential function at the best fit solution via MATLAB’s nlparci function. 

The value of τ2, the component of the fit capturing longer timescale dynamics, is reported in 

Fig. 4f,h,j. To assess the significance of the differences between two estimated time 

constants  and , the covariance matrix of each estimator  was computed as 

, where RSS is the residual sum of squares, df is the number of 

degrees of freedom of the fit (given by the number of lags considered minus the number of 

parameters of the function, which was 3 for the double exponential function), and J is the 

Jacobian of the function at the best-fit solution. The variance  of  was then determined 

as the appropriate element on the diagonal of Vi, and a Z-test was performed on the 

difference  (with the standard deviation ) versus the null value of zero. 

Holm-Bonferroni correction was applied to control for multiple comparisons.

7.1 Single-cell information time scale

For each cell, instantaneous information at lag t from the peak was computed as [I(tpeak + t) 
+ I(tpeak + t)]/2. Values for all lags between 0 and 0.6 s were averaged across all informative 

cells (peak information > 0.06 bits), and a noise baseline (0.03 bits) was subtracted from the 

average information. The resulting average was then max-normalized and fit with single and 

double exponential decay functions, following the same procedure outlined above for the 

consistency of the population decoder posterior (Fig. 2i–k). The Bayesian Information 

Criterion did not justify using the double exponential fit for AC/choice; hence the single 

exponential form was chosen across all three conditions considered (AC/stimulus, AC/

choice, PPC/choice). Confidence intervals and significance tests for differences between 

time constants were determined as above for the consistency of the population decoder 

posterior, with the exception that the number of degrees of freedom for the fits was taken to 

be 1 rather than 3, following the choice of a single exponential rather than double 

exponential functional form.
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Extended Data

Extended Data Figure 1. Sound frequency tuning in AC neurons
a, Mean responses (maximum relative spike rate across the 1 s sound presentation) to 

sinusoid amplitude-modulated (SAM) pure tones in example AC neurons. SAM tones were 

presented to passively listening mice after the task. b, Histogram of sound responsive cells’ 

best frequencies, the frequency of the maximum response for each neuron (unresponsive 

neurons were not included). c–f, Information about the sound stimulus category and the 

mouse’s choice in the task were compared between neurons that were untuned or tuned for 

sound stimulus frequency as measured in a. Significant tuning was defined by comparing the 

frequency selectivity index (ymax-ymean)/(ymax+ymean), where ymax is the mean response to 

the best frequency, and ymean is the mean response to the other frequencies, to the frequency 

selectivity index calculated with shuffled trial identities. Frequency-tuned and untuned 

neurons did not contain significantly different amounts of information about the stimulus 
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category or choice in the task (p > 0.5, rank sum test). g–h, In a subset of imaging 

experiments (n = 3), we played the same sound location stimuli as in the task, in a similar 

repeating pattern as mice experienced during task trials (three consecutive stimulus repeats). 

Trial-averaged responses to sound location stimuli measured during the task (left) and 

during passive listening (right) contexts. Line colors indicate the sound location (see panel 

i). (Bottom row) Tuning curves measured as the average maximal relative spike rate during 

the sound presentation at each sound location in task (left) and passive (right) contexts. i, 
Sound location color legend, applies to g,h. j, Cumulative distributions of sound location 

selectivity indices (LSI: (ymax-ymean)/(ymax+ymean), where ymax is the mean response to the 

best location, and ymean is the mean response to the other locations) measured in AC and 

PPC neurons during the task (solid lines) and passive listening (dashed lines). AC cells had 

significantly higher LSIs than PPC cells (p < 0.001, rank sum test), and AC cells had 

significantly higher LSIs in the passive context than the active context (p < 0.001, signed 

rank test). k, Sound stimulus category information during the task in neurons untuned or 

tuned for sound location, determined by comparing LSIs in real and shuffled data during 

passive listening. Neurons with significant sound location tuning had more information 

about the sound location stimulus category (left vs right), p < 0.001, rank sum test. l, 
Cumulative distributions of sound category information for neurons tuned and untuned for 

sound location (using LSI significance). m, Choice information in neurons untuned or tuned 

for the sound location. n, Cumulative distributions of choice information for neurons tuned 

and untuned for the sound location (using LSI significance). Location-selective neurons had 

similar distributions of choice information (p > 0.5, rank sum test). o, Mean response of all 

neurons across each stimulus repeat during the task (left) and passive (right) contexts. Error 

bars indicate mean ± sem. Responses to sound repeat 1 tended to be higher than responses to 

repeats 2 and 3 (p < 0.001, signed rank test). p, Histograms of the stimulus repeat during 

which cells had their maximal responses during task (left) and passive listening (right) 

contexts. q, z-scored, trial-averaged activity of all AC neurons with 3 stimulus repeats in the 

passive context, sorted by time of peak mean activity and aligned to the time of the first 

sound onset. Responses during the task (left) and passive listening (right) were sorted by the 

time of peak response during the task. White vertical lines show the onset times of the first, 

second, and third sound stimulus repeats. Task trials with more or fewer than three repeats 

were excluded. The overall temporal pattern of activation across the AC population appeared 

similar in the two contexts, with a subset of neurons responding during the first sound 

stimulus presentation, and other neurons responding later, with some responses appearing to 

depend on subsequent sound stimulus repeats. Many neurons did not appear obviously 

responsive to the sound stimuli used in the task.
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Extended Data Figure 2. GLM components, fit quality and model fit examples
a, Time course of the behavior variables included in the GLM during an example trial, in 

which the sound stimulus was played from location 1 (−90 deg) and the mouse turned left at 

the T-intersection to receive a reward. Each predictor was convolved with a set of basis 

functions (Methods, examples in b–d). b, Generic set of basis functions that were convolved 

with behavior variables and events, extending backward and forward in time to model a 

neuron’s response to and prediction of events. The density, temporal extent, and width of 

basis functions were tailored to each behavioral variable (Methods). c, Example set of basis 

functions used for sound onset for each of 8 locations. These basis functions are shown 

Runyan et al. Page 23

Nature. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



before convolving with a vector that specifies sound onset time as a time series of zeros and 

ones (as shown in a). d, Example set of basis functions defined spatially along the extent of 

the stem of the T-maze, which were positive only when the mouse made a left turn in that 

trial. e, Example field of view showing GCaMP6 expression in PPC. f, Mean activity across 

all AC (red) and PPC (blue) cells, across all trials. Shading indicates s.e.m. n = 7 datasets for 

AC and PPC. g, Uncoupled encoding model performance measured using trial-averaged 

responses and predictions, quantified as explained variance. Each thin line is the distribution 

from a single dataset (n = 7 AC datasets, n = 7 PPC datasets). Thick lines indicate mean 

distributions across datasets. AC vs PPC: p > 0.1, rank sum test. h, Uncoupled encoding 

model performance measured as the fraction of additional explained deviance compared to 

the null model on frame-by-frame activity (Methods). Each thin line is the distribution from 

a single dataset. Thick lines indicate mean distributions across datasets. AC vs. PPC: p < 

0.05, rank sum test. Note that explained deviance is calculated over single imaging frames 

and single trials in the test data set (not on averaged data), and because of trial-to-trial 

variability of neuron responses, does not approach perfect prediction (1.0). i, Histograms of 

distributions of total beta score (the sum of the absolute value of beta coefficients) in fitted 

models across all AC and PPC neurons, for predictors in three categories: 1) sound, 2) 

running, and 3) position/choice (turn direction in the maze). For ease of display, identically 

zero values were ignored when making the histograms. AC neurons tended to have stronger 

weights for predictors related to the sound stimulus (p < 0.001, rank sum test), while PPC 

neurons tended to have stronger weights for predictors related to position/choice (p < 0.05, 

rank sum test). j–k, Relationship of predictor weights within single neurons in AC and PPC. 

For each neuron, a score within each predictor category was calculated as the sum of the 

absolute value of coefficients (“total beta”). Clustering was used to reveal functional groups 

of neurons tuned to different sets of parameters (see Supplementary Information). Different 

clusters are indicated with different colors. Note that clustering was performed separately on 

AC and PPC data, hence the clusters obtained for AC are not related to those for PPC. l–n, 

Fitted model components’ gain43 for variables related to running speed, position in the maze 

and turn direction, and sound location (exp(β*X), right, where β is the fitted coefficient, and 

X is the task predictor convolved with the basis functions), during the various epochs of the 

trial. mean ± s.e.m. o, Timescales of task predictors. A single exponential was fit to the 

autocorrelation of each of the 419 task predictors used in the uncoupled model, in order to 

estimate each variable’s timescale of variability. Across all AC (red) and PPC (blue) 

neurons, the mean coefficient magnitude fitted by the model for each task predictor was 

compared to the decay time constant, to determine whether the longer coding timescale in 

PPC could be explained by neurons in PPC responding preferentially to variables with 

longer timescales of variability. Even for task variables with longer timescales, AC tended to 

have greater coefficients (p < 0.001, rank sum test). It was thus unlikely that the longer 

coding timescales that we measured in PPC were due to its modulation by task variables 

with long timescales. p, Example AC responses and model predictions. Trial-averaged 

responses of example AC neurons during the sound stimulus presentation in correct (black) 

and error (gray) test trials (left) and the model’s predicted responses in left-out data (right). 

All responses were normalized to the maximum response across all trial conditions (y-axis 

scale) and aligned to the time of the first sound stimulus onset. Each row is the trial-

averaged response or prediction for trials of one of the eight sound location conditions. 
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Neurons with model fit performance across the spectrum are included, from poorly fit (25th 

percentile), to very well-fit (99th percentile). q, Same as p, for PPC

Extended Data Figure 3. Choice probability and behavioral relevance of sensory information
a, Red: AC neurometric curve computed from the performance of a sound location decoder 

(Supplementary Information). Dark gray: psychometric curve for mice from AC imaging 

sessions. Session-averaged psychometric and neurometric curves were positively correlated 

(r = 0.93, p < 0.001). b, Intersection information (II) above chance levels in AC neurons. 

The amount of II per cell above chance level was 0.2% ± 0.1% in AC (larger than zero with 

Runyan et al. Page 25

Nature. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



p < 0.0001, paired signed-rank test) and 0.7% ± 0.2% in PPC (p < 0.0001, paired signed-

rank test). c, Conditional choice information plotted against stimulus information for all 

single AC cells. Stimulus information was computed without discounting the correlation 

between stimulus and choice (Spearman r = 0.33, p < 0.001; Supplementary Information). 

d–f, Same as a–c, except for PPC. d, Session-averaged psychometric and neurometric 

curves were positively correlated (r = 0.99, p < 0.001). e, Intersection information (II) above 

chance levels in PPC neurons was 0.7 ± 0.2 (p < 0.0001, paired signed rank test). f, 
Spearman r = 0.43, p < 0.001. g, Cumulative conditional choice information, computed by 

the performance of a choice decoder that assumes knowledge of all GLM predictors not 

directly related to choice (Supplementary Information). Cumulative conditional choice 

information was significant in both AC and PPC (AC: p < 0.05, PPC: p < 0.001, one-tailed t-

test on the value of the choice information at the moment of the turn). Red: AC, blue: PPC. 

h–i, Total single-cell conditional choice information, computed as the maximum of the 

cumulative conditional choice information for each cell in AC and PPC. j–l, Same as g–i, 
quantifying the performance of the conditional choice decoder as a model-based choice 

probability19. j, Population choice probability was significantly larger than 0.5 in both AC 

and PPC at the last aligned time frame (p<0.001, one-tailed t-test). k, Mean single-cell 

choice probability 0.537±0.005 (larger than 0.5, p < 0.001, t-test). l: Mean single-cell choice 

probability 0.536±0.006 (larger than 0.5, p < 0.001, t-test).
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Extended Data Figure 4. Decoder Controls
a, Gray: behavior performance during single imaging sessions used in all analyses. Overall 

behavior performance did not correlate with the number of choice selective neurons in the 

AC (r = −0.34, p > 0.1) or PPC (r = 0.38, p > 0.1) populations. Red, blue: single-session 

neurometric curves a sound location decoder (same as in Extended Data Fig. 3a, d; 

Supplementary Information). Inset in each panel reports the correlation coefficient between 

the neurometric and psychometric curves. * indicated p < 0.05; ** p < 0.01; *** p < 0.001; 

one-tailed test with null hypothesis that correlation is not higher than chance. b, (left) z-

scored trial-averaged activity of all AC neurons with > 0.06 bits of stimulus information, 
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sorted by time of peak mean activity, aligned to trial events as in (Fig. 1d,e). (right) 

Instantaneous stimulus category information in the same neurons. Time scalebar below panel 

on the right applies to all panels b–e and g–j. c, (left) z-scored, trial-averaged activity of all 

AC neurons with ≤ 0.06 bits of stimulus information. (right) Instantaneous stimulus category 

information in the same neurons. d, (left) z-scored, trial-averaged activity of all AC neurons 

with > 0.06 bits of choice information, sorted by time of peak mean activity. (right) 

Instantaneous choice information for the same cells. e, (left) z-scored, trial-averaged activity 

of all AC neurons with ≤ 0.06 bits of choice information, sorted by time of peak mean 

activity. (right) Instantaneous choice information for the same cells. f, Information about 

stimulus category (left, magenta) and choice (right, magenta) averaged across all AC 

neurons with at least 0.06 bits of information, as a function of the time from the peak. 

Normalized, aligned activity in all cells (dashed line) and informative cells (solid red line) 

are superimposed. g–k Same as b–f, for PPC cells. l–n, Information about the exact location 

of the sound stimulus. l, The cumulative population decoder was used on subsets of trials 

from only two sound locations such that there were equal numbers of trials from each 

location and no other locations were present. The data are shown for a comparison of 

locations 6 and 8. Note that locations 6 and 8 are part of the same category and indicate the 

same correct choice in the task. m, Maximum cumulative information calculated as in (l) for 

other location pairs that belong to the same stimulus category (left or right). All imaging 

experiments were performed in the left hemisphere, and so AC had higher information about 

contralateral sound stimulus locations. Error bars indicate mean ± sem. n, Diagram showing 

the sound location arrangements for location pairs compared in decoders in (l–m). o, Choice 

information in all datasets. Green bars: choice information that can be extracted from sound 

location due to an uneven distribution of errors across sound locations. This was a concern 

because more errors occurred at sound locations close to the midline (Fig. 1c), and perhaps 

location tuning could lead to an aberrant choice information measurement. Light red (AC) 

and light blue (PPC): maximum instantaneous choice information in neuronal population 

activity. Dark red (AC) and dark blue (PPC): total cumulative choice information in neuronal 

population activity. The uneven distribution of error trials across sound locations was not 

sufficient to explain choice information in AC or PPC.
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Extended Data Figure 5. Coupling and Pearson correlations across contexts
a, The coupled model was fit using random subpopulations of 37 neurons (the number of 

neurons in the smallest dataset) 100 times in all AC and PPC datasets. Cumulative 

distributions of performance of the coupled model using all subsamples of AC (red) and 

PPC (blue) datasets show that all PPC datasets still had greater coupling than all AC datasets 

(p < 0.01, rank sum test), even when using smaller numbers of neurons. b–c, Cumulative 

distributions of the coupling index in AC (red) and PPC (blue), measured during passive 

listening and the “no task/stimulus” context. d, Cumulative distributions of partial Pearson 

correlations (Methods) during the pre-turn period of the task in AC (red) and PPC (blue). 
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Consistent with the higher coupling indices measured in PPC (Fig. 3d), correlations were 

higher in PPC than AC (p < 0.001, KS test). e, Cumulative distributions of partial Pearson 

correlations during passive listening to the stimulus sets used in the task in AC (red) and 

PPC (blue) datasets. PPC was more correlated than AC even when the mouse was not 

engaged in a task (p < 0.001; KS test). f, Cumulative distributions of partial Pearson 

correlations measured in the “no task/stimulus” context in AC (red) and PPC (blue). Again, 

PPC was more correlated than AC, in the absence of task or sound stimulus presentations (p 

< 0.001, KS test). g, Cumulative distributions of Pearson correlations measured in the “no 

task/stimulus” context when the mice were stationary (not running) on the ball (AC vs. PPC: 

p < 0.001, KS test). h, Cumulative distributions of mean relative spike rates in AC (0.24 

± 0.14 a.u., mean ± sem) and PPC (0.45 ± 0.18 a.u.). AC vs. PPC: p < 0.001, KS test. i, 
Coupling index vs. mean relative firing rate measured during the pre-turn period of the task. 

Each dot is one neuron. Because coupling and firing rate were not positively correlated (AC: 

r = −0.020; PPC: r = 0.007; p > 0.25), it is unlikely that higher firing rates in PPC caused an 

artefactual increase in correlation and coupling relative to AC. j, Partial Pearson correlations, 

computed across trials for time lags spanning 0 to over 1 s in AC (red) and PPC (blue), over 

all data, during the task. *** indicates p < 0.001, rank-rum test on the average Partial 

Pearson correlation across lags smaller than 0.5s. k, Partial Pearson correlations in AC 

populations, computed separately for correct (red) and error (pink) trials, for pre-turn data. l, 
Same as k, for PPC (dark blue: correct trials, light blue: error trials). *** indicates p < 0.001, 

rank-sum test on the average partial Pearson correlation across lags smaller than 0.5 s. m, 

Partial Pearson correlations in the pre-turn (red) and post-turn (pink) trial epochs in AC 

populations. n, Same as m, for PPC. *** indicates p < 0.001, rank-sum test on the average 

partial Pearson correlation across lags smaller than 0.5 s.

Extended Data Figure 6. Using the cell-cell model to test possible contributions of task features to 
coupling
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To help rule out the possibility that coupling parameters simply allow the model to explain 

behavioral correlates not included in the uncoupled model, rather than neuron-neuron 

correlations, we removed all the task predictors from our model to create a cell-cell model 

that only had coupling predictors. We reason that if the model could misattribute common 

drive to neurons by behavior variables, then the cell-cell model should be able to take on the 

uncoupled model’s prediction of responses to task parameters. We estimated an upper bound 

on the bleedthrough of task variables to coupling parameters by comparing the cell-cell 

model dcxc to dc − du, the increase in model performance when including coupling 

predictors in addition to the task predictors. If the coupling predictors could explain all of 

the responses related to the task predictors, dcxc would far exceed the coupling value. a–b, 

Performance of a version of the encoding model with only the activity of other neurons as 

predictors and no task predictors (cell-cell model) compared to coupling (performance of 

coupled model – performance of uncoupled model) in AC (a) PPC (b). c, Comparing 

cumulative distributions of coupling in AC (red line) and PPC (blue line) to our estimates of 

an upper bound on the extent to which coupling could be explained entirely by task-related 

variables (black lines). Note that the coupling distribution in AC cells (red line) was mostly 

restricted to values less than the upper bound on coupling explainable by task-related 

variables, while coupling in many PPC neurons (blue line) exceeded it (p < 0.01, rank sum 

test). These results suggest that the higher level of coupling measured in PPC is unlikely to 

be due to shared common inputs to PPC neurons relating to task variables.

Extended Data Figure 7. Choice information redundancy
a–b, Cumulative (dark lines) and instantaneous (light lines) choice information in AC (n = 7 

datasets) and PPC (n = 7 datasets), aligned to the turn and averaged across datasets. Shading 

indicates mean ± sem across datasets. c, Ratio of instantaneous to cumulative choice 

information in 1 s windows, relative to the time of the mouse’s turn in the maze. In PPC, 

instantaneous and cumulative information were similar prior to the turn. These results 

support our findings in Fig. 4, that information in PPC was consistent (here, redundant) 

across time before the mouse reported its choice by turning in the maze. *** indicates p < 

0.001, z-test.
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Extended Data Figure 8. Population scaling of information and consistency
a, Scaling of total information content (maximum of cumulative information) with 

population size. Error bars indicate mean ± sem across datasets. Lines: analytical prediction 

from the Random Overlap model (Supplementary Information). b. Scaling of information 

consistency with population size, by measuring τ2 (the long timescale component of decoder 

consistency, as in Fig. 4f) while varying population sizes (Supplementary Information). 

Error bars indicate mean ± sem across datasets. While information in AC and PPC grew 

with increasing population size, the coding timescale remained constant in AC, but grew 

modestly in PPC.

Runyan et al. Page 32

Nature. Author manuscript; available in PMC 2018 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 9. Simple generative model of sequential neuronal activity and the effect 
of shuffling on information content
a, Schematic of simple model of choice tuning and statistical coupling between cells, 

expressed as a probabilistic graphical model. “Choice” indicates the choice encoded by the 

neuronal population in any given trial. ri represents the activation of cell i, β is the strength 

of choice tuning, and γ1 and γ2 represent the strength of the statistical coupling of cell i to 

cell i − 1 and cell i − 2 respectively (Supplementary Information). b, Example of cell activity 

and decoded choice signal generated by the model for a batch of 20 trials encoding right 

choice. For each trial, the top row indicates the activity of left-preferring cells (black = 

active). The middle row indicates the activity of right-preferring cells. The bottom row 
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indicates the choice decoded at each instant from the population activity (green = right, 

purple = left; Supplementary Information). Symbols on the right indicate whether the 

readout model implemented the correct choice. c, Temporal consistency computed across 

105 trials, each composed by 50 time steps. Different shades of red (or blue) indicate 

different multiplicative scaling factors applied to both coupling parameters γi, ranging from 

0 for no coupling to 1 for the values derived from experimental data in AC (or PPC). Dashed 

lines: consistency computed for shuffled data (superimposed with the solid lines 

corresponding to no coupling). d, Same as c, for the instantaneous choice information 

contained in the choice signal generated by the model, over the first 10 time steps of the 

simulation. Note how cross-cell coupling enables accumulation of choice information. Note 

also how information in shuffled data is identical to the information in the unshuffled data. e, 

Temporal consistency for simulated PPC data, computed separately for behaviorally correct 

trials (solid line) and error trials (dashed line), as determined by the readout model described 

in Supplementary Information. f, Behavioral performance generated by the readout model 

(Supplementary Information) as a function of strength of the coupling in the model. 0 

corresponds to no coupling; 1 to the value of the coupling parameters derived from the 

experimental data. g, Instantaneous stimulus information measured 1 s after the first 

stimulus onset, in real experimental data (red) and after disrupting coupling by shuffling the 

identities of trials of the same condition independently for each neuron (gray). Information 

was computed for random subpopulations of 37 cells and averaged across 48 such random 

selections. Circles represent individual datasets, bars represent the average across datasets, 

error bars represent mean ± sem. h, Same as g, for cumulative information at the last aligned 

time point in a trial. i, Same as g, for choice information in both AC (red) and PPC (blue) at 

the moment of the turn. j, Same as i, for cumulative information at the last aligned time 

point in the trial.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Imaging AC and PPC responses during a sound localization task
a, Schematic of experimental set-up with VR screenshots for the beginning of the trial and 

T-intersection. b, Schematic of the task. Left/Right sound category (speaker symbols), 

indicated the rewarded side of the maze (checkmark). c, Behavioral performance. Each line 

is the average across sessions for a single mouse. n = 5 mice. d–e, z-scored, trial-averaged 

activity of all AC and PPC neurons, sorted by time of peak mean activity. f, Average 

responses of example AC and PPC neurons on correct (black) and error (gray) trials.
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Figure 2. Encoding and decoding stimulus and choice information in AC and PPC
a, The encoding model (GLM) was fit to each neuron’s activity using task predictors 

(“uncoupled model”) or task predictors and activity of other neurons (coupling predictors, 

“coupled model”). To decode stimuli or choices (indicated as ν), the posterior probability of 

each stimulus or choice was computed, based on the current time point only (“instantaneous 

decoder”), or all previous time points in the trial (“cumulative decoder”). The decoder could 

use either all neurons (population decoder) or individual neurons (single-neuron decoder). 

b–c, Example trial-averaged responses (left column) and model predictions (right column) in 

correct (black) and error (gray) trials. d–e, Cumulative stimulus category and choice 

information decoded in AC (red) and PPC (blue) populations. Shading indicates mean ± sem 

across datasets. n = 7 datasets for AC and PPC. f–h, Max-normalized instantaneous 

information about stimulus category and choice for AC and PPC cells with at least 0.06 bits 
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of information at any point in the trial (fraction of all cells: AC: stimulus, 20.2 ± 5.4%; 

choice, 15.9 ± 3.2%; PPC: stimulus, 3.1 ± 1.3%; choice, 19.3 ± 4.6%). Neurons were sorted 

by the times of their maximum information. i–j, Information about stimulus category and 

choice averaged across all AC (red) and PPC (blue) cells, calculated as a two-sided decay 

(forward and backward in time) around the information peak of each cell. Shading indicates 

mean ± sem across cells with at least 0.06 bits of information. k, Decay time constant of 

single-cell information from exponential fits to information time courses in (i–j). Error bars: 

95% confidence intervals (Methods). *** indicates p < 0.001, z-test.
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Figure 3. PPC populations were more coupled than AC populations
a, For a PPC neuron with high coupling index, single trial responses (magenta) and 

predicted responses from the uncoupled (cyan) and coupled (black) models. b–c, Prediction 

performance of the coupled and uncoupled models for all AC and PPC neurons (circles). d, 

Cumulative distribution of the coupling index in AC (red) and PPC (blue) neurons. *** 

indicates p < 0.001, KS test. e, Coupling index in coupled model variants using as coupling 

predictors the mean population activity, 3–12 factors extracted from the population activity, 

or all other simultaneously imaged neurons. *** indicates p < 0.001, rank sum test. f, Mean 

coupling index in AC (red) and PPC (blue) when coupling predictors were shifted by 

different temporal lags relative to the predicted neuron’s activity. Error bars indicate mean ± 

sem. * indicates p < 0.05; ** p < 0.01; *** p < 0.001; rank sum test comparing PPC vs. AC. 

Only neurons with fraction explained deviance > 0.1 in the coupled model were included in 

panels d–f (n = 174/329 AC neurons and n = 185/386 PPC neurons).
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Figure 4. Coupling is associated with a longer timescale of population codes for choice in PPC
a, Example population, instantaneous decoder posterior calculated on a single trial in PPC. 

b, Example demonstrating the calculation of posterior correlation. At times t and t+lag, the 

correlation coefficient between the posteriors at this interval was calculated for all trials 

(dots). c–d, Mean posterior correlation measured between all pairs of time points in the trial 

for stimulus and choice decoding. e, Time extent for which the mean autocorrelation 

functions in c–d is above 0.3 (dashed gray lines in c,d). *** indicates p < 0.001, z-test. f, τ2 

of double exponential fits to posterior correlation functions. Colored bars indicate unshuffled 

data; gray bars indicate data shuffled to disrupt coupling. The difference between colored 

and gray bars tests the contribution of coupling to the temporal consistency. Asterisks 

indicate significant differences between real and shuffled data, z-test from confidence 

intervals of fits. Error bars: 95% confidence intervals. g, Time-shifted coupling index, as in 

Fig. 3f, for pre- and post-turn periods. Asterisks indicate significant differences between pre-

turn and post-turn data, rank sum test. h, τ2 of double exponential fits to posterior 

correlation time courses in pre-turn and post-turn data. Brackets show comparisons between 

the contribution of coupling (unshuffled – shuffled) to the consistency of the choice signal 

across conditions, z-test. Error bars: 95% confidence intervals. i–j, Same as g–h, for 

behaviorally correct vs. error trials. * indicates p < 0.05; ** p < 0.01; *** p < 0.001.
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