27 research outputs found

    Defining the baseline transcriptional fingerprint of rabbit hamstring autograft

    Get PDF
    Anterior cruciate ligament (ACL) injuries are common and of high relevance given their significant effects on patient function, quality of life, and posttraumatic arthritis. To date, investigators have reported on the expression of genes classically associated with tendon and ligament reconstruction, including decorin (DCN) and collagen type 1 (COL1A1 and COL1A2). However, the transcriptional fingerprint for hamstring tendons, one of the most common autografts used for ACLR, remains to be determined. The purpose of this study was to characterize the baseline transcriptional state of semitendinosus autografts in a rabbit model for ACLR and to employ such characterization to guide scientifically-driven target gene selection for future analyses. Next generation RNA sequencing was performed on whole semitendinosus autografts from four New Zealand White rabbits (mean age: 193 ± 0 days, mean weight: 2.78 kg ± 0.15 kg) and subsequently analyzed using gene enrichment and protein-protein interaction network analysis. Decorin, Secreted Protein Acidic and Cysteine Rich (SPARC), Collagen type 1, and Proline and Arginine Rich End Leucine Rich Repeat Protein (PRELP) and were determined to be the highest expressed genes with tendon-associated ontology. These results strengthen the association between genes such as DCN, COL1A1, and COL1A2 and tendon tissues as well as provide the novel addition of further high-expression, tendon characteristic genes such as SPARC and PRELP to provide guidance as to which molecules serve as high-signal candidates for future ACL research. In addition, this paper provides open-access to the expression fingerprint of hamstring autograft for ACLR in New Zealand White rabbits, thus providing a readily-accessible collaborative reference, in alignment with ethical animal research principles

    Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production

    Get PDF
    Background: Clinical translation of mesenchymal stromal cells (MSCs) necessitates basic characterization of the cell product since variability in biological source and processing of MSCs may impact therapeutic outcomes. Although expression of classical cell surface markers (e.g., CD90, CD73, CD105, and CD44) is used to define MSCs, identification of functionally relevant cell surface markers would provide more robust release criteria and options for quality control. In addition, cell surface expression may distinguish between MSCs from different sources, including bone marrow-derived MSCs and clinical-grade adipose-derived MSCs (AMSCs) grown in human platelet lysate (hPL). Methods: In this work we utilized quantitative PCR, flow cytometry, and RNA-sequencing to characterize AMSCs grown in hPL and validated non-classical markers in 15 clinical-grade donors. Results: We characterized the surface marker transcriptome of AMSCs, validated the expression of classical markers, and identified nine non-classical markers (i.e., CD36, CD163, CD271, CD200, CD273, CD274, CD146, CD248, and CD140B) that may potentially discriminate AMSCs from other cell types. More importantly, these markers exhibit variability in cell surface expression among different cell isolates from a diverse cohort of donors, including freshly prepared, previously frozen, or proliferative state AMSCs and may be informative when manufacturing cells. Conclusions: Our study establishes that clinical-grade AMSCs expanded in hPL represent a homogeneous cell culture population according to classical markers,. Additionally, we validated new biomarkers for further AMSC characterization that may provide novel information guiding the development of new release criteria

    Loss of histone methyltransferase Ezh2 stimulates an osteogenic transcriptional program in chondrocytes but does not affectcartilage development

    Get PDF
    Ezh2 is a histone methyltransferase that suppresses osteoblast maturation and skeletal development. We evaluated the roleof Ezh2 in chondrocyte lineage differentiation and endochondral ossification. Ezh2 was genetically inactivated in the mesenchymal, osteoblastic, and chondrocytic lineages in mice using the Prrx1-Cre,Osx1-Cre, and Col2a1-Cre drivers, respectively. Wild-type and conditional knockout mice were phenotypically assessed by grossmorphology, histology, and micro-CT imaging. Ezh2-deficient chondrocytes in micromass culture models were evaluated usingRNA-sequencing, histologic evaluation, and western blotting. Aged mice with Ezh2 deficiency were also evaluated for prematuredevelopment of osteoarthritis using radiographic analysis. Ezh2 deficiency in murine chondrocytes reduced bone density at 4 weeks of age, although caused no other gross developmentaleffects. Knockdown of Ezh2 in chondrocyte micromass cultures resulted in a global reduction in trimethylation of histone 3lysine 27 (H3K27me3) and altered differentiation in vitro. RNA-seq analysis revealed enrichment of an osteogenic gene expressionprofile in Ezh2 deficient chondrocytes. Joint development proceeded normally in the absence of Ezh2 in chondrocytes withoutinducing excessive hypertrophy or premature osteoarthritis in vivo. In summary, loss of Ezh2 reduced H3K27me3 levels, increased expression of osteogenic genes in chondrocytes, and resulted ina transient post-natal bone phenotype. Remarkably, Ezh2 activity is dispensable for normal chondrocyte maturation and endochondralossification in vivo, even though it appears to have a critical role during early stages of mesenchymal lineage-commitment

    Functional expression of ZNF467 and PCBP2 supports adipogenic lineage commitment in adipose-derived mesenchymal stem cells

    Get PDF
    Bone marrow-derived mesenchymal stromal/stem cells (BMSCs) have the potential to be employed in many different skeletal therapies. A major limitation to utilizing BMSCs as a therapeutic strategy in human disease and tissue regeneration is the low cell numbers obtained from initial isolation necessitating multiple cell passages that can lead to decreased cell quality. Adipose-derived mesenchymal stromal/stem cells (AMSCs) have been proposed as an alternative cell source for regenerative therapies; however the differentiation capacity of these cells differs from BMSCs. To understand the differences between BMSCs and AMSCs, we compared the global gene expression profiles of BMSCs and AMSCs and identified two genes, PCBP2 and ZNF467 that were differentially expressed between AMSCs and BMSCs. We demonstrate that PCBP2 and ZNF467 impact adipogenic but not osteogenic differentiation, further supporting evidence that AMSCs and BMSCs appear to be adapted to their microenvironment

    Histone H4 Methyltransferase Suv420h2 Maintains Fidelity of Osteoblast Differentiation

    No full text
    © 2016 Wiley Periodicals, Inc. Osteogenic lineage commitment and progression is controlled by multiple signaling pathways (e.g., WNT, BMP, FGF) that converge on bone-related transcription factors. Access of osteogenic transcription factors to chromatin is controlled by epigenetic regulators that generate post-translational modifications of histones (“histone code”), as well as read, edit and/or erase these modifications. Our understanding of the biological role of epigenetic regulators in osteoblast differentiation remains limited. Therefore, we performed next-generation RNA sequencing (RNA-seq) and established which chromatin-related proteins are robustly expressed in mouse bone tissues (e.g., fracture callus, calvarial bone). These studies also revealed that cells with increased osteogenic potential have higher levels of the H4K20 methyl transferase Suv420h2 compared to other methyl transferases (e.g., Suv39h1, Suv39h2, Suv420h1, Ezh1, Ezh2). We find that all six epigenetic regulato

    Occurrence of Carcharhinus isodon (Finetooth Shark) in Florida Bay

    No full text
    Carcharhinus isodon (finetooth shark) is a migratory shark found in coastal waters of the southeastern United States and is well documented in the waters of north Florida in both the Gulf of Mexico and the Atlantic Ocean. The southernmost reports are from Lemon Bay (27°N), just north of Charlotte Harbor on the west coast and from Port Salerno (27°N) on the east coast. Four C. isodon were captured on bottom-set longline in Florida Bay, just north of 25°N latitude, during routine sampling for Pristis pectinata (smalltooth sawfish). These captures extend the southern range of C. isodon in Florida to approximately 25°N and increase the likelihood of exchange between the Atlantic and Gulf stocks

    Brd4 is required for chondrocyte differentiation and endochondral ossification

    No full text
    Differentiation of multi-potent mesenchymal stromal cells (MSCs) is directed by the activities of lineage-specific transcription factors and co-factors. A subset of these proteins controls the accessibility of chromatin by recruiting histone acetyl transferases or deacetylases that regulate acetylation of the N-termini of H3 and H4 histone proteins. Bromodomain (BRD) proteins recognize these acetylation marks and recruit the RNA pol II containing transcriptional machinery. Our previous studies have shown that Brd4 is required for osteoblast differentiation in vitro. Here, we investigated the role of Brd4 on endochondral ossification in C57BL/6 mice and chondrogenic differentiation in cell culture models. Conditional loss of Brd4 in the mesenchyme (Brd4 cKO, Brd4fl/fl: Prrx1-Cre) yields smaller mice that exhibit alteration in endochondral ossification. Importantly, abnormal growth plate morphology and delayed long bone formation is observed in juvenile Brd4 cKO mice. One week old Brd4 cKO mice have reduced proliferative and hypertrophic zones within the physis and exhibit a delay in the formation of the secondary ossification center. At the cellular level, Brd4 function is required for chondrogenic differentiation and maturation of both ATDC5 cells and immature mouse articular chondrocytes. Mechanistically, Brd4 loss suppresses Sox9 levels and reduces expression of Sox9 and Runx2 responsive endochondral genes (e.g., Col2a1, Acan, Mmp13 and Sp7/Osx). Collectively, our results indicate that Brd4 is a key epigenetic regulator required for normal chondrogenesis and endochondral ossification

    The lysine methyltransferases SET and MYND domain containing 2 (Smyd2) and Enhancer of Zeste 2 (Ezh2) co-regulate osteoblast proliferation and mineralization

    No full text
    Bone formation is controlled by histone modifying enzymes that regulate post-translational modifications on nucleosomal histone proteins and control accessibility of transcription factors to gene promoters required for osteogenesis. Enhancer of Zeste homolog 2 (EZH2/Ezh2), a histone H3 lysine 27 (H3K27) methyl transferase, is a suppressor of osteoblast differentiation. Ezh2 is regulated by SET and MYND domain-containing protein 2 (SMYD2/Smyd2), a lysine methyltransferase that modifies both histone and non-histone proteins. Here, we examined whether Smyd2 modulates Ezh2 suppression of osteoblast differentiation. Musculoskeletal RNA-seq data show that SMYD2/Smyd2 is the most highly expressed SMYD/Smyd member in human bone tissues and mouse osteoblasts. Smyd2 loss of function analysis in mouse MC3T3 osteoblasts using siRNA depletion enhances proliferation and calcium deposition. Loss of Smyd2 protein does not affect alkaline phosphatase activity nor does it result in a unified expression response for standard osteoblast-related mRNA markers (e.g., Bglap, Ibsp, Spp1, Sp7), indicating that Smyd2 does not directly control osteoblast differentiation. Smyd2 protein depletion enhances levels of the osteo-suppressive Ezh2 protein and H3K27 trimethylation (H3K27me3), as expected from increased cell proliferation, while elevating the osteo-inductive Runx2 protein. Combined siRNA depletion of both Smyd2 and Ezh2 protein is more effective in promoting calcium deposition when compared to loss of either protein. Collectively, our results indicate that Smyd2 inhibits proliferation and indirectly the subsequent mineral deposition by osteoblasts. Mechanistically, Smyd2 represents a functional epigenetic regulator that operates in parallel to the suppressive effects of Ezh2 and H3K27 trimethylation on osteoblast differentiation
    corecore