32 research outputs found

    Outcomes and risk score for distal pancreatectomy with celiac axis resection (DP-CAR) : an international multicenter analysis

    Get PDF
    Background: Distal pancreatectomy with celiac axis resection (DP-CAR) is a treatment option for selected patients with pancreatic cancer involving the celiac axis. A recent multicenter European study reported a 90-day mortality rate of 16%, highlighting the importance of patient selection. The authors constructed a risk score to predict 90-day mortality and assessed oncologic outcomes. Methods: This multicenter retrospective cohort study investigated patients undergoing DP-CAR at 20 European centers from 12 countries (model design 2000-2016) and three very-high-volume international centers in the United States and Japan (model validation 2004-2017). The area under receiver operator curve (AUC) and calibration plots were used for validation of the 90-day mortality risk model. Secondary outcomes included resection margin status, adjuvant therapy, and survival. Results: For 191 DP-CAR patients, the 90-day mortality rate was 5.5% (95 confidence interval [CI], 2.2-11%) at 5 high-volume (1 DP-CAR/year) and 18% (95 CI, 9-30%) at 18 low-volume DP-CAR centers (P=0.015). A risk score with age, sex, body mass index (BMI), American Society of Anesthesiologists (ASA) score, multivisceral resection, open versus minimally invasive surgery, and low- versus high-volume center performed well in both the design and validation cohorts (AUC, 0.79 vs 0.74; P=0.642). For 174 patients with pancreatic ductal adenocarcinoma, the R0 resection rate was 60%, neoadjuvant and adjuvant therapies were applied for respectively 69% and 67% of the patients, and the median overall survival period was 19months (95 CI, 15-25months). Conclusions: When performed for selected patients at high-volume centers, DP-CAR is associated with acceptable 90-day mortality and overall survival. The authors propose a 90-day mortality risk score to improve patient selection and outcomes, with DP-CAR volume as the dominant predictor

    Locally advanced pancreatic cancer: Work-up, staging, and local intervention strategies

    Get PDF
    Locally advanced pancreatic cancer (LAPC) has several definitions but essentially is a nonmetastasized pancreatic cancer, in which upfront resection is considered not beneficial due to extensive vascular involvement and consequent high chance of a nonradical resection. The introduction of FOLFIRINOX chemotherapy and gemcitabine-nab-paclitaxel (gem-nab) has had major implications for the management and outcome of patients with LAPC. After 4–6 months induction chemotherapy, the majority of patients have stable disease or even tumor-regression. Of these, 12 to 35% are successfully downstaged to resectable disease. Several studies have reported a 30–35 months overall survival after resection; although it currently remains unclear if this is a result of the resection or the good response to chemotherapy. Following chemotherapy, selection of patients for resection is difficult, as contrast-enhanced computed-tomography (CT) scan is unreliable in differentiating between viable tumor and fibrosis. In case a resection is not considered possible but stable disease is observed, local ablative techniques are being studied, such as irreversible electroporation, radiofrequency ablation, and stereotactic body radiation therapy. Pragmatic, multicenter, randomized studies will ultimately have to confirm the exact role of both surgical exploration and ablation in these patients. Since evidence-based guidelines for the management of LAPC are lacking, this review proposes a standardized approach for the treatment of LAPC based on the best available evidence

    Measurement-Induced State Transitions in a Superconducting Qubit: Within the Rotating Wave Approximation

    Full text link
    Superconducting qubits typically use a dispersive readout scheme, where a resonator is coupled to a qubit such that its frequency is qubit-state dependent. Measurement is performed by driving the resonator, where the transmitted resonator field yields information about the resonator frequency and thus the qubit state. Ideally, we could use arbitrarily strong resonator drives to achieve a target signal-to-noise ratio in the shortest possible time. However, experiments have shown that when the average resonator photon number exceeds a certain threshold, the qubit is excited out of its computational subspace, which we refer to as a measurement-induced state transition. These transitions degrade readout fidelity, and constitute leakage which precludes further operation of the qubit in, for example, error correction. Here we study these transitions using a transmon qubit by experimentally measuring their dependence on qubit frequency, average photon number, and qubit state, in the regime where the resonator frequency is lower than the qubit frequency. We observe signatures of resonant transitions between levels in the coupled qubit-resonator system that exhibit noisy behavior when measured repeatedly in time. We provide a semi-classical model of these transitions based on the rotating wave approximation and use it to predict the onset of state transitions in our experiments. Our results suggest the transmon is excited to levels near the top of its cosine potential following a state transition, where the charge dispersion of higher transmon levels explains the observed noisy behavior of state transitions. Moreover, occupation in these higher energy levels poses a major challenge for fast qubit reset

    Overcoming leakage in scalable quantum error correction

    Full text link
    Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC). In a QEC circuit, leakage builds over time and spreads through multi-qubit interactions. This leads to correlated errors that degrade the exponential suppression of logical error with scale, challenging the feasibility of QEC as a path towards fault-tolerant quantum computation. Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle. This shortens the lifetime of leakage and curtails its ability to spread and induce correlated errors. We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than 1×1031 \times 10^{-3} throughout the entire device. The leakage removal process itself efficiently returns leakage population back to the computational basis, and adding it to a code circuit prevents leakage from inducing correlated error across cycles, restoring a fundamental assumption of QEC. With this demonstration that leakage can be contained, we resolve a key challenge for practical QEC at scale.Comment: Main text: 7 pages, 5 figure

    Measurement-induced entanglement and teleportation on a noisy quantum processor

    Full text link
    Measurement has a special role in quantum theory: by collapsing the wavefunction it can enable phenomena such as teleportation and thereby alter the "arrow of time" that constrains unitary evolution. When integrated in many-body dynamics, measurements can lead to emergent patterns of quantum information in space-time that go beyond established paradigms for characterizing phases, either in or out of equilibrium. On present-day NISQ processors, the experimental realization of this physics is challenging due to noise, hardware limitations, and the stochastic nature of quantum measurement. Here we address each of these experimental challenges and investigate measurement-induced quantum information phases on up to 70 superconducting qubits. By leveraging the interchangeability of space and time, we use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases -- from entanglement scaling to measurement-induced teleportation -- in a unified way. We obtain finite-size signatures of a phase transition with a decoding protocol that correlates the experimental measurement record with classical simulation data. The phases display sharply different sensitivity to noise, which we exploit to turn an inherent hardware limitation into a useful diagnostic. Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors

    Evidence Map of Pancreatic Surgery-A living systematic review with meta-analyses by the International Study Group of Pancreatic Surgery (ISGPS)

    Get PDF
    Background: Pancreatic surgery is associated with considerable morbidity and, consequently, offers a large and complex field for research. To prioritize relevant future scientific projects, it is of utmost importance to identify existing evidence and uncover research gaps. Thus, the aim of this project was to create a systematic and living Evidence Map of Pancreatic Surgery. Methods: PubMed, the Cochrane Central Register of Controlled Trials, and Web of Science were systematically searched for all randomized controlled trials and systematic reviews on pancreatic surgery. Outcomes from every existing randomized controlled trial were extracted, and trial quality was assessed. Systematic reviews were used to identify an absence of randomized controlled trials. Randomized controlled trials and systematic reviews on identical subjects were grouped according to research topics. A web-based evidence map modeled after a mind map was created to visualize existing evidence. Meta-analyses of specific outcomes of pancreatic surgery were performed for all research topics with more than 3 randomized controlled trials. For partial pancreatoduodenectomy and distal pancreatectomy, pooled benchmarks for outcomes were calculated with a 99% confidence interval. The evidence map undergoes regular updates. Results: Out of 30,860 articles reviewed, 328 randomized controlled trials on 35,600 patients and 332 systematic reviews were included and grouped into 76 research topics. Most randomized controlled trials were from Europe (46%) and most systematic reviews were from Asia (51%). A living meta-analysis of 21 out of 76 research topics (28%) was performed and included in the web-based evidence map. Evidence gaps were identified in 11 out of 76 research topics (14%). The benchmark for mortality was 2% (99% confidence interval: 1%–2%) for partial pancreatoduodenectomy and <1% (99% confidence interval: 0%–1%) for distal pancreatectomy. The benchmark for overall complications was 53% (99%confidence interval: 46%–61%) for partial pancreatoduodenectomy and 59% (99% confidence interval: 44%–80%) for distal pancreatectomy. Conclusion: The International Study Group of Pancreatic Surgery Evidence Map of Pancreatic Surgery, which is freely accessible via www.evidencemap.surgery and as a mobile phone app, provides a regularly updated overview of the available literature displayed in an intuitive fashion. Clinical decision making and evidence-based patient information are supported by the primary data provided, as well as by living meta-analyses. Researchers can use the systematic literature search and processed data for their own projects, and funding bodies can base their research priorities on evidence gaps that the map uncovers

    Non-Abelian braiding of graph vertices in a superconducting processor

    Full text link
    Indistinguishability of particles is a fundamental principle of quantum mechanics. For all elementary and quasiparticles observed to date - including fermions, bosons, and Abelian anyons - this principle guarantees that the braiding of identical particles leaves the system unchanged. However, in two spatial dimensions, an intriguing possibility exists: braiding of non-Abelian anyons causes rotations in a space of topologically degenerate wavefunctions. Hence, it can change the observables of the system without violating the principle of indistinguishability. Despite the well developed mathematical description of non-Abelian anyons and numerous theoretical proposals, the experimental observation of their exchange statistics has remained elusive for decades. Controllable many-body quantum states generated on quantum processors offer another path for exploring these fundamental phenomena. While efforts on conventional solid-state platforms typically involve Hamiltonian dynamics of quasi-particles, superconducting quantum processors allow for directly manipulating the many-body wavefunction via unitary gates. Building on predictions that stabilizer codes can host projective non-Abelian Ising anyons, we implement a generalized stabilizer code and unitary protocol to create and braid them. This allows us to experimentally verify the fusion rules of the anyons and braid them to realize their statistics. We then study the prospect of employing the anyons for quantum computation and utilize braiding to create an entangled state of anyons encoding three logical qubits. Our work provides new insights about non-Abelian braiding and - through the future inclusion of error correction to achieve topological protection - could open a path toward fault-tolerant quantum computing

    Suppressing quantum errors by scaling a surface code logical qubit

    Full text link
    Practical quantum computing will require error rates that are well below what is achievable with physical qubits. Quantum error correction offers a path to algorithmically-relevant error rates by encoding logical qubits within many physical qubits, where increasing the number of physical qubits enhances protection against physical errors. However, introducing more qubits also increases the number of error sources, so the density of errors must be sufficiently low in order for logical performance to improve with increasing code size. Here, we report the measurement of logical qubit performance scaling across multiple code sizes, and demonstrate that our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number. We find our distance-5 surface code logical qubit modestly outperforms an ensemble of distance-3 logical qubits on average, both in terms of logical error probability over 25 cycles and logical error per cycle (2.914%±0.016%2.914\%\pm 0.016\% compared to 3.028%±0.023%3.028\%\pm 0.023\%). To investigate damaging, low-probability error sources, we run a distance-25 repetition code and observe a 1.7×1061.7\times10^{-6} logical error per round floor set by a single high-energy event (1.6×1071.6\times10^{-7} when excluding this event). We are able to accurately model our experiment, and from this model we can extract error budgets that highlight the biggest challenges for future systems. These results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number, illuminating the path to reaching the logical error rates required for computation.Comment: Main text: 6 pages, 4 figures. v2: Update author list, references, Fig. S12, Table I

    12( R

    No full text

    International Consensus Guidelines for Risk Factors in Chronic Pancreatitis. Recommendations from the working group for the international consensus guidelines for chronic pancreatitis in collaboration with the International Association of Pancreatology, the American Pancreatic Association, the Japan Pancreas Society, and European Pancreatic Club

    Get PDF
    Chronic pancreatitis (CP) is a complex inflammatory disease with remarkably impaired quality of life and permanent damage of the pancreas. This paper is part of the international consensus guidelines on CP and presents the consensus on factors elevating the risk for CP.An international working group with 20 experts on CP from the major pancreas societies (IAP, APA, JPS, and EPC) evaluated 14 statements generated from evidence on four questions deemed to be the most clinically relevant in CP. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was used to evaluate the level of evidence available per statement. To determine the level of agreement, the working group voted on the 14 statements for strength of agreement, using a nine-point Likert scale in order to calculate Cronbach's alpha reliability coefficient.Strong consensus and agreement were obtained for the following statements: Alcohol, smoking, and certain genetic alterations are risk factors for CP. Past history, family history, onset of symptoms, and life-style factors including alcohol intake and smoking history should be determined. Alcohol consumption dose-dependently elevates the risk of CP up to 4-fold. Ever smokers, even smoking less than a pack of cigarettes per day, have an increased risk for CP, as compared to never smokers.Both genetic and environmental factors can markedly elevate the risk for CP. Therefore, health-promoting lifestyle education and in certain cases genetic counselling should be employed to reduce the incidence of CP
    corecore