131 research outputs found

    Experimental protocol for biodiesel production with isolation of alkenones as coproducts from commercial Isochrysis algal biomass

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Visualized Experiments 112 (2016): e54189, doi:10.3791/54189.The need to replace petroleum fuels with alternatives from renewable and more environmentally sustainable sources is of growing importance. Biomass-derived biofuels have gained considerable attention in this regard, however first generation biofuels from edible crops like corn ethanol or soybean biodiesel have generally fallen out of favor. There is thus great interest in the development of methods for the production of liquid fuels from domestic and superior non-edible sources. Here we describe a detailed procedure for the production of a purified biodiesel from the marine microalgae Isochrysis. Additionally, a unique suite of lipids known as polyunsaturated long-chain alkenones are isolated in parallel as potentially valuable coproducts to offset the cost of biodiesel production. Multi-kilogram quantities of Isochrysis are purchased from two commercial sources, one as a wet paste (80% water) that is first dried prior to processing, and the other a dry milled powder (95% dry). Lipids are extracted with hexanes in a Soxhlet apparatus to produce an algal oil ("hexane algal oil") containing both traditional fats (i.e., triglycerides, 46-60% w/w) and alkenones (16-25% w/w). Saponification of the triglycerides in the algal oil allows for separation of the resulting free fatty acids (FFAs) from alkenone-containing neutral lipids. FFAs are then converted to biodiesel (i.e., fatty acid methyl esters, FAMEs) by acid-catalyzed esterification while alkenones are isolated and purified from the neutral lipids by crystallization. We demonstrate that biodiesel from both commercial Isochrysis biomasses have similar but not identical FAME profiles, characterized by elevated polyunsaturated fatty acid contents (approximately 40% w/w). Yields of biodiesel were consistently higher when starting from the Isochrysis wet paste (12% w/w vs. 7% w/w), which can be traced to lower amounts of hexane algal oil obtained from the powdered Isochrysis product.This work was supported by the National Science Foundation (CHE-1151492), the Northwest Advanced Renewables Alliance (fellowship to J. Wilson-Peltier), and through a private donation from friends of WHOI

    Late Holocene sea- and land-level change on the U.S. southeastern Atlantic coast

    Get PDF
    Late Holocene relative sea-level (RSL) reconstructions can be used to estimate rates of land-level (subsidence or uplift) change and therefore to modify global sea-level projections for regional conditions. These reconstructions also provide the long-term benchmark against which modern trends are compared and an opportunity to understand the response of sea level to past climate variability. To address a spatial absence of late Holocene data in Florida and Georgia, we reconstructed ~ 1.3 m of RSL rise in northeastern Florida (USA) during the past ~ 2600 years using plant remains and foraminifera in a dated core of high salt-marsh sediment. The reconstruction was fused with tide-gauge data from nearby Fernandina Beach, which measured 1.91 ± 0.26 mm/year of RSL rise since 1900 CE. The average rate of RSL rise prior to 1800 CE was 0.41 ± 0.08 mm/year. Assuming negligible change in global mean sea level from meltwater input/removal and thermal expansion/contraction, this sea-level history approximates net land-level (subsidence and geoid) change, principally from glacio-isostatic adjustment. Historic rates of rise commenced at 1850–1890 CE and it is virtually certain (P = 0.99) that the average rate of 20th century RSL rise in northeastern Florida was faster than during any of the preceding 26 centuries. The linearity of RSL rise in Florida is in contrast to the variability reconstructed at sites further north on the U.S. Atlantic coast and may suggest a role for ocean dynamic effects in explaining these more variable RSL reconstructions. Comparison of the difference between reconstructed rates of late Holocene RSL rise and historic trends measured by tide gauges indicates that 20th century sea-level trends along the U.S. Atlantic coast were not dominated by the characteristic spatial fingerprint of melting of the Greenland Ice Sheet

    Influence of Fuel Injection System and Engine-Timing Adjustments on Regulated Emissions from Four Biodiesel Fuels

    Get PDF
    The use of biofuels for transportation has grown substantially in the past decade in response to federal mandates and increased concern about the use of petroleum fuels. As biofuels become more common, it is imperative to assess their influence on mobile source emissions of regulated and hazardous pollutants. This assessment cannot be done without first obtaining a basic understanding of how biofuels affect the relationship between fuel properties, engine design, and combustion conditions. Combustion studies were conducted on biodiesel fuels from four feedstocks (palm oil, soybean oil, canola oil, and coconut oil) with two injection systems, mechanical and electronic. For the electronic system, fuel injection timing was adjusted to compensate for physical changes caused by different fuels. The emissions of nitrogen oxides (NOx) and partial combustion products were compared across both engine injection systems. The analysis showed differences in NOx emissions based on hydrocarbon chain length and degree of fuel unsaturation, with little to no NOx increase compared with ultra-low sulfur diesel fuel for most conditions. Adjusting the fuel injection timing provided some improvement in biodiesel emissions for NOx and particulate matter, particularly at lower engine loads. The results indicated that the introduction of biodiesel and biodiesel blends could have widely dissimilar effects in different types of vehicle fleets, depending on typical engine design, age, and the feedstock used for biofuel production

    Cyclic peptide-poly(HPMA) nanotubes as drug delivery vectors : in vitro assessment, pharmacokinetics and biodistribution

    Get PDF
    Size and shape have progressively appeared as some of the key factors influencing the properties of nanosized drug delivery systems. In particular, elongated materials are thought to interact differently with cells and therefore may allow alterations of in vivo fate without changes in chemical composition. A challenge, however, remains the creation of stable self-assembled materials with anisotropic shape for delivery applications that still feature the ability to disassemble, avoiding organ accumulation and facilitating clearance from the system. In this context, we report on cyclic peptide-polymer conjugates that self-assemble into supramolecular nanotubes, as confirmed by SANS and SLS. Their behaviour ex and in vivo was studied: the nanostructures are non-toxic up to a concentration of 0.5 g L and cell uptake studies revealed that the pathway of entry was energy-dependent. Pharmacokinetic studies following intravenous injection of the peptide-polymer conjugates and a control polymer to rats showed that the larger size of the nanotubes formed by the conjugates reduced renal clearance and elongated systemic circulation. Importantly, the ability to slowly disassemble into small units allowed effective clearance of the conjugates and reduced organ accumulation, making these materials interesting candidates in the search for effective drug carriers

    Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches.

    Get PDF
    The cerebellum plays a role in a wide variety of complex behaviors. In order to better understand the role of the cerebellum in human behavior, it is important to know how this structure interacts with cortical and other subcortical regions of the brain. To date, several studies have investigated the cerebellum using resting-state functional connectivity magnetic resonance imaging (fcMRI; Krienen and Buckner, 2009; O'Reilly et al., 2010; Buckner et al., 2011). However, none of this work has taken an anatomically-driven lobular approach. Furthermore, though detailed maps of cerebral cortex and cerebellum networks have been proposed using different network solutions based on the cerebral cortex (Buckner et al., 2011), it remains unknown whether or not an anatomical lobular breakdown best encompasses the networks of the cerebellum. Here, we used fcMRI to create an anatomically-driven connectivity atlas of the cerebellar lobules. Timecourses were extracted from the lobules of the right hemisphere and vermis. We found distinct networks for the individual lobules with a clear division into "motor" and "non-motor" regions. We also used a self-organizing map (SOM) algorithm to parcellate the cerebellum. This allowed us to investigate redundancy and independence of the anatomically identified cerebellar networks. We found that while anatomical boundaries in the anterior cerebellum provide functional subdivisions of a larger motor grouping defined using our SOM algorithm, in the posterior cerebellum, the lobules were made up of sub-regions associated with distinct functional networks. Together, our results indicate that the lobular boundaries of the human cerebellum are not necessarily indicative of functional boundaries, though anatomical divisions can be useful. Additionally, driving the analyses from the cerebellum is key to determining the complete picture of functional connectivity within the structure

    The coupling between inner and outer scales in a zero pressure boundary layer evaluated using a Hölder exponent framework

    Get PDF
    This work considers the connectivity between large and small scales in boundary-layer turbulence by formalizing the modulation effect of the small scales by the large in terms of the pointwise Hölder condition for the small scales. We re-investigate a previously published dataset from this perspective and are able to characterize the coupling effectively using the (cross-)correlative relations between the large scale velocity and the small scale Hölder exponents. The nature of this coupling varies as a function of dimensionless distance from the wall based on inner-scaling, y+{y}^{+}, as well as on the boundary-layer height, δ. In terms of the fundamental change in the sign of the coupling between large and small scales, the critical height appears to be y+1000{y}^{+}\sim 1000. Below this height, small scale structures are associated with (and occur earlier than) maxima in the large scale velocity. Above this height, while the lag is similar in magnitude, the small scale structures are associated with minima in the large scale velocity. To consider these results further, we introduce a modified quadrant analysis and show that it is the coupling to the large scale low velocity state that is critical for the dynamics

    Lifespan Differences in Cortico-Striatal Resting State Connectivity

    Full text link
    Distinctive cortico-striatal circuits that serve motor and cognitive functions have been recently mapped based on resting state connectivity. It has been reported that age differences in cortico-striatal connectivity relate to cognitive declines in aging. Moreover, children in their early teens (i.e., youth) already show mature motor network patterns while their cognitive networks are still developing. In the current study, we examined age differences in the frontal-striatal ?cognitive? and ?motor? circuits in children and adolescence, young adults (YAs), and older adults (OAs). We predicted that the strength of the ?cognitive? frontal-striatal circuits would follow an inverted ?U? pattern across age; children and OAs would have weaker connectivity than YAs. However, we predicted that the ?motor? circuits would show less variation in connectivity strength across the lifespan. We found that most areas in both the ?cognitive? and ?motor? circuits showed higher connectivity in YAs than children and OAs, suggesting general inverted ?U?-shaped changes across the lifespan for both the cognitive and motor frontal-striatal networks.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140317/1/brain.2013.0155.pd

    The importance of monsoon precipitation for foundation tree species across the semiarid Southwestern U.S.

    Get PDF
    Forest dynamics in arid and semiarid regions are sensitive to water availability, which is becoming increasingly scarce as global climate changes. The timing and magnitude of precipitation in the semiarid southwestern U.S. (“Southwest”) has changed since the 21st century began. The region is projected to become hotter and drier as the century proceeds, with implications for carbon storage, pest outbreaks, and wildfire resilience. Our goal was to quantify the importance of summer monsoon precipitation for forested ecosystems across this region. We developed an isotope mixing model in a Bayesian framework to characterize summer (monsoon) precipitation soil water recharge and water use by three foundation tree species (Populus tremuloides [aspen], Pinus edulis [piñon], and Juniperus osteosperma [Utah juniper]). In 2016, soil depths recharged by monsoon precipitation and tree reliance on monsoon moisture varied across the Southwest with clear differences between species. Monsoon precipitation recharged soil at piñon-juniper (PJ) and aspen sites to depths of at least 60 cm. All trees in the study relied primarily on intermediate to deep (10-60 cm) moisture both before and after the onset of the monsoon. Though trees continued to primarily rely on intermediate to deep moisture after the monsoon, all species increased reliance on shallow soil moisture to varying degrees. Aspens increased reliance on shallow soil moisture by 13% to 20%. Utah junipers and co-dominant ñons increased their reliance on shallow soil moisture by about 6% to 12%. Nonetheless, approximately half of the post-monsoon moisture in sampled piñon (38-58%) and juniper (47-53%) stems could be attributed to the monsoon. The monsoon contributed lower amounts to aspen stem water (24-45%) across the study area with the largest impacts at sites with recent precipitation. Therefore, monsoon precipitation is a key driver of growing season moisture that semiarid forests rely on across the Southwest. This monsoon reliance is of critical importance now more than ever as higher global temperatures lead to an increasingly unpredictable and weaker North American Monsoon

    Nursing-Relevant Patient Outcomes and Clinical Processes in Data Science Literature: 2019 Year in Review

    Get PDF
    Data science continues to be recognized and used within healthcare due to the increased availability of large data sets and advanced analytics. It can be challenging for nurse leaders to remain apprised of this rapidly changing landscape. In this paper, we describe our findings from a scoping literature review of papers published in 2019 that use data science to explore, explain, and/or predict 15 phenomena of interest to nurses. Fourteen of the 15 phenomena were associated with at least one paper published in 2019. We identified the use of many contemporary data science methods (e.g., natural language processing, neural networks) for many of the outcomes. We found many studies exploring Readmissions and Pressure Injuries. The topics of Artificial Intelligence/Machine Learning Acceptance, Burnout, Patient Safety, and Unit Culture were poorly represented. We hope the studies described in this paper help readers: (a) understand the breadth and depth of data science’s ability to improve clinical processes and patient outcomes that are relevant to nurses and (b) identify gaps in the literature that are in need of exploration
    corecore