381 research outputs found

    Erroneously old radiocarbon ages from terrestrial pollen concentrates in Yellowstone Lake, Wyoming, USA

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in [Schiller, C. M., Whitlock, C., Elder, K. L., Iverson, N. A., & Abbott, M. B. Erroneously old radiocarbon ages from terrestrial pollen concentrates in Yellowstone Lake, Wyoming, USA. Radiocarbon, 63(1), (2021): 321-342, https://doi.org/10.1017/RDC.2020.118.Accelerator mass spectrometry (AMS) dating of pollen concentrates is often used in lake sediment records where large, terrestrial plant remains are unavailable. Ages produced from chemically concentrated pollen as well as manually picked Pinaceae grains in Yellowstone Lake (Wyoming) sediments were consistently 1700–4300 cal years older than ages established by terrestrial plant remains, tephrochronology, and the age of the sediment-water interface. Previous studies have successfully utilized the same laboratory space and methods, suggesting the source of old-carbon contamination is specific to these samples. Manually picking pollen grains precludes admixture of non-pollen materials. Furthermore, no clear source of old pollen grains occurs on the deglaciated landscape, making reworking of old pollen grains unlikely. High volumes of CO2 are degassed in the Yellowstone Caldera, potentially introducing old carbon to pollen. While uptake of old CO2 through photosynthesis is minor (F14C approximately 0.99), old-carbon contamination may still take place in the water column or in surficial lake sediments. It remains unclear, however, what mechanism allows for the erroneous ages of highly refractory pollen grains while terrestrial plant remains were unaffected. In the absence of a satisfactory explanation for erroneously old radiocarbon ages from pollen concentrates, we propose steps for further study.This research was supported by NSF Grant No. 1515353 to C. Whitlock and sampling in Yellowstone National Park was conducted under permits YELL-SCI-0009 and YELL-SCI-5054

    Morphological encoding beyond slots and fillers: An ERP study of comparative formation in English

    Get PDF
    One important organizational property of morphology is competition. Different means of expression are in conflict with each other for encoding the same grammatical function. In the current study, we examined the nature of this control mechanism by testing the formation of comparative adjectives in English during language production. Event-related brain potentials (ERPs) were recorded during cued silent production, the first study of this kind for comparative adjective formation. We specifically examined the ERP correlates of producing synthetic relative to analytic comparatives, e.g. angrier vs. more angry. A frontal, bilaterally distributed, enhanced negative-going waveform for analytic comparatives (vis-a-vis synthetic ones) emerged approximately 300ms after the (silent) production cue. We argue that this ERP effect reflects a control mechanism that constrains grammatically-based computational processes (viz. more comparative formation). We also address the possibility that this particular ERP effect may belong to a family of previously observed negativities reflecting cognitive control monitoring, rather than morphological encoding processes per se

    Formation of the BiAg2 surface alloy on lattice-mismatched interfaces

    Get PDF
    We report on the growth of a monolayer-thick BiAg2 surface alloy on thin Ag films grown on Pt(111) and Cu(111). Using low energy electron diffraction (LEED), angle resolved photoemission spectroscopy (ARPES), and scanning tunneling microscopy (STM) we show that the surface structure of the 13 ML Bi/x-ML Ag/Pt(111) system (x≥2) is strongly affected by the annealing temperature required to form the alloy. As judged from the characteristic (3×3)R30 LEED pattern, the BiAg2 alloy is partially formed at room temperature. A gentle, gradual increase in the annealing temperatures successively results in the formation of a pure BiAg2 phase, a combination of that phase with a (2×2) superstructure, and finally the pure (2×2) phase, which persists at higher annealing temperatures. These results complement recent work reporting the (2×2) as a predominant phase, and attributing the absence of BiAg2 alloy to the strained Ag/Pt interface. Likewise, we show that the growth of the BiAg2 alloy on similarly lattice-mismatched 1 and 2 ML Ag-Cu(111) interfaces also requires a low annealing temperature, whilst higher temperatures result in BiAg2 clustering and the formation of a BiCu2 alloy. The demonstration that the BiAg2 alloy can be formed on thin Ag films on different substrates presenting a strained interface has the prospect of serving as bases for technologically relevant systems, such as Rashba alloys interfaced with magnetic and semiconductor substrates.This work was supported by the Spanish Gouvernment (Grant No. MAT2013-46593-C6-4-P), the Basque Gouvernment (Grant No. IT621-13), and the Spanish Research Council (Grant No. CSIC-201560I022). Z.M.A. would like to acknowledge funding from DAAD and DIPC. P.L. would also like to acknowledge funding from the Deutsche Forschungsgemeinschaft via Project No.RE 1469/8-1.Peer Reviewe

    KDM2A integrates DNA and histone modification signals through a CXXC/PHD module and direct interaction with HP1.

    Get PDF
    Functional genomic elements are marked by characteristic DNA and histone modification signatures. How combinatorial chromatin modification states are recognized by epigenetic reader proteins and how this is linked to their biological function is largely unknown. Here we provide a detailed molecular analysis of chromatin recognition by the lysine demethylase KDM2A. Using biochemical approaches we identify a nucleosome interaction module within KDM2A consisting of a CXXC type zinc finger, a PHD domain and a newly identified Heterochromatin Protein 1 (HP1) interaction motif that mediates direct binding between KDM2A and HP1. This nucleosome interaction module enables KDM2A to decode nucleosomal H3K9me3 modification in addition to CpG methylation signals. The multivalent engagement with DNA and HP1 results in a nucleosome binding circuit in which KDM2A can be recruited to H3K9me3-modified chromatin through HP1, and HP1 can be recruited to unmodified chromatin by KDM2A. A KDM2A mutant deficient in HP1-binding is inactive in an in vivo overexpression assay in zebrafish embryos demonstrating that the HP1 interaction is essential for KDM2A function. Our results reveal a complex regulation of chromatin binding for both KDM2A and HP1 that is modulated by DNA- and H3K9-methylation, and suggest a direct role for KDM2A in chromatin silencing

    Multi-proxy record of Holocene paleoenvironmental conditions from Yellowstone Lake, Wyoming, USA

    Get PDF
    A composite 11.82 m-long (9876e-67 cal yr BP) sediment record from Yellowstone Lake, Wyoming was analyzed using a robust set of biological and geochemical proxies to investigate the paleoenvironmental evolution of the lake and its catchment in response to long-term climate forcing. Oxygen isotopes from diatom frustules were analyzed to reconstruct Holocene climate changes, and pollen, charcoal, diatom assemblages, and biogenic silica provided information on terrestrial and limnological responses. The long-term trends recorded in the terrestrial and limnic ecosystems over the last 9800 years reflect the influence of changes in the amplification of the seasonal cycle of insolation on regional climate. The early Holocene (9880e6700 cal yr BP) summer insolation maximum and strengthening of the northeastern Pacific subtropical high-pressure system created warm dry conditions and decreasing summer insolation in the middle (6700e3000 cal yr BP) and late (3000e-67 cal yr BP) Holocene resulted in progressively cooler, wetter conditions. Submillenial climate variation is also apparent, with a wetter/cooler interval between 7000 and 6800 cal yr BP and warmer and/or drier conditions from 4500 to 3000 cal yr BP and at ca. 1100 cal yr BP. These data show that the Yellowstone Lake basin had a climate history typical of a summer-dry region, which helps to better define the spatial variability of Holocene climate in the Greater Yellowstone Ecosystem

    Imaging myocardial carcinoid with T2-STIR CMR

    Get PDF
    We used T2-STIR (Short Tau Inversion Recovery) cardiovascular magnetic resonance to demonstrate carcinoid tumor metastases to the heart and liver in a 64-year-old woman with a biopsy-proven ileal carcinoid tumor who was referred because of an abnormal echocardiogram

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions

    Get PDF
    Significant reductions in stratospheric ozone occur inside the polar vortices each spring when chlorine radicals produced by heterogeneous reactions on cold particle surfaces in winter destroy ozone mainly in two catalytic cycles, the ClO dimer cycle and the ClO/BrO cycle. Chlorofluorocarbons (CFCs), which are responsible for most of the chlorine currently present in the stratosphere, have been banned by the Montreal Protocol and its amendments, and the ozone layer is predicted to recover to 1980 levels within the next few decades. During the same period, however, climate change is expected to alter the temperature, circulation patterns and chemical composition in the stratosphere, and possible geo-engineering ventures to mitigate climate change may lead to additional changes. To realistically predict the response of the ozone layer to such influences requires the correct representation of all relevant processes. The European project RECONCILE has comprehensively addressed remaining questions in the context of polar ozone depletion, with the objective to quantify the rates of some of the most relevant, yet still uncertain physical and chemical processes. To this end RECONCILE used a broad approach of laboratory experiments, two field missions in the Arctic winter 2009/10 employing the high altitude research aircraft M55-Geophysica and an extensive match ozone sonde campaign, as well as microphysical and chemical transport modelling and data assimilation. Some of the main outcomes of RECONCILE are as follows: (1) vortex meteorology: the 2009/10 Arctic winter was unusually cold at stratospheric levels during the six-week period from mid-December 2009 until the end of January 2010, with reduced transport and mixing across the polar vortex edge; polar vortex stability and how it is influenced by dynamic processes in the troposphere has led to unprecedented, synoptic-scale stratospheric regions with temperatures below the frost point; in these regions stratospheric ice clouds have been observed, extending over >106km2 during more than 3 weeks. (2) Particle microphysics: heterogeneous nucleation of nitric acid trihydrate (NAT) particles in the absence of ice has been unambiguously demonstrated; conversely, the synoptic scale ice clouds also appear to nucleate heterogeneously; a variety of possible heterogeneous nuclei has been characterised by chemical analysis of the non-volatile fraction of the background aerosol; substantial formation of solid particles and denitrification via their sedimentation has been observed and model parameterizations have been improved. (3) Chemistry: strong evidence has been found for significant chlorine activation not only on polar stratospheric clouds (PSCs) but also on cold binary aerosol; laboratory experiments and field data on the ClOOCl photolysis rate and other kinetic parameters have been shown to be consistent with an adequate degree of certainty; no evidence has been found that would support the existence of yet unknown chemical mechanisms making a significant contribution to polar ozone loss. (4) Global modelling: results from process studies have been implemented in a prognostic chemistry climate model (CCM); simulations with improved parameterisations of processes relevant for polar ozone depletion are evaluated against satellite data and other long term records using data assimilation and detrended fluctuation analysis. Finally, measurements and process studies within RECONCILE were also applied to the winter 2010/11, when special meteorological conditions led to the highest chemical ozone loss ever observed in the Arctic. In addition to quantifying the 2010/11 ozone loss and to understand its causes including possible connections to climate change, its impacts were addressed, such as changes in surface ultraviolet (UV) radiation in the densely populated northern mid-latitudes

    Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions : (RECONCILE) ; activities and results

    Get PDF
    The international research project RECONCILE has addressed central questions regarding polar ozone depletion, with the objective to quantify some of the most relevant yet still uncertain physical and chemical processes and thereby improve prognostic modelling capabilities to realistically predict the response of the ozone layer to climate change. This overview paper outlines the scope and the general approach of RECONCILE, and it provides a summary of observations and modelling in 2010 and 2011 that have generated an in many respects unprecedented dataset to study processes in the Arctic winter stratosphere. Principally, it summarises important outcomes of RECONCILE including (i) better constraints and enhanced consistency on the set of parameters governing catalytic ozone destruction cycles, (ii) a better understanding of the role of cold binary aerosols in heterogeneous chlorine activation, (iii) an improved scheme of polar stratospheric cloud (PSC) processes that includes heterogeneous nucleation of nitric acid trihydrate (NAT) and ice on non-volatile background aerosol leading to better model parameterisations with respect to denitrification, and (iv) long transient simulations with a chemistry-climate model (CCM) updated based on the results of RECONCILE that better reproduce past ozone trends in Antarctica and are deemed to produce more reliable predictions of future ozone trends. The process studies and the global simulations conducted in RECONCILE show that in the Arctic, ozone depletion uncertainties in the chemical and microphysical processes are now clearly smaller than the sensitivity to dynamic variability

    A Conceptual Framework for Understanding the Biogeochemistry of Dry Riverbeds Through the Lens of Soil Science

    Get PDF
    Intermittent rivers and ephemeral streams (IRES) encompass fluvial ecosystems that eventually stop flowing and run dry at some point in space and time. During the dry phase, channels of IRES consist mainly of dry riverbeds (DRBs), prevalent yet widely unexplored ecotones between dry and wet phases that can strongly influence the biogeochemistry of fluvial networks. DRBs are often overlooked because they do not strictly belong to either domain of soil or freshwater science. Due to this dual character of DRBs, we suggest that concepts and knowledge from soil science can be used to expand the understanding of IRES biogeochemistry. Based on this idea, we propose that DRBs can be conceptually understood as early stage soils exhibiting many similarities with soils through two main forces: i) time since last sediment transport event, and ii) the development status of stabilizing structures (e.g. soil crusts and/or vascular plants). Our analysis suggests that while DRBs and soils may differ in master physical attributes (e.g. soil horizons vs fluvial sedimentary facies), they become rapidly comparable in terms of microbial communities and biogeochemical processes. We further propose that drivers of DRBs biogeochemistry are similar to those of soils and, hence, concepts and methods used in soil science are transferable to DRBs research. Finally, our paper presents future research directions to advance the knowledge of DRBs and to understand their role in the biogeochemistry of intermittent fluvial networks

    Mucin Biopolymers As Broad-Spectrum Antiviral Agents

    Get PDF
    Mucus is a porous biopolymer matrix that coats all wet epithelia in the human body and serves as the first line of defense against many pathogenic bacteria and viruses. However, under certain conditions viruses are able to penetrate this infection barrier, which compromises the protective function of native mucus. Here, we find that isolated porcine gastric mucin polymers, key structural components of native mucus, can protect an underlying cell layer from infection by small viruses such as human papillomavirus (HPV), Merkel cell polyomavirus (MCV), or a strain of influenza A virus. Single particle analysis of virus mobility inside the mucin barrier reveals that this shielding effect is in part based on a retardation of virus diffusion inside the biopolymer matrix. Our findings suggest that purified mucins may be used as a broad-range antiviral supplement to personal hygiene products, baby formula or lubricants to support our immune system.National Institutes of Health (U.S.) (grant P30-ES002109)National Institutes of Health (U.S.) (grant P50-GM068763)German Academic Exchange Service (Postdoctoral fellowship
    corecore