505 research outputs found

    Differences in the evolution of the ischemic penumbra in stroke-prone spontaneously hypertensive and Wistar-Kyoto rats

    Get PDF
    <p><b>Background and Purpose:</b> Stroke-prone spontaneously hypertensive rats (SHRSP) are a highly pertinent stroke model with increased sensitivity to focal ischemia compared with the normotensive reference strain (Wistar-Kyoto rats; WKY). Study aims were to investigate temporal changes in the ischemic penumbra in SHRSP compared with WKY.</p> <p><b>Methods:</b> Permanent middle cerebral artery occlusion was induced with an intraluminal filament. Diffusion- (DWI) and perfusion- (PWI) weighted magnetic resonance imaging was performed from 1 to 6 hours after stroke, with the PWI-DWI mismatch used to define the penumbra and thresholded apparent diffusion coefficient (ADC) maps used to define ischemic damage.</p> <p><b>Results:</b> There was significantly more ischemic damage in SHRSP than in WKY from 1 to 6 hours after stroke. The perfusion deficit remained unchanged in WKY (39.9±6 mm<sup>2</sup> at 1 hour, 39.6±5.3 mm<sup>2</sup> at 6 hours) but surprisingly increased in SHRSP (43.9±9.2 mm<sup>2</sup> at 1 hour, 48.5±7.4 mm<sup>2</sup> at 6 hours; P=0.01). One hour after stroke, SHRSP had a significantly smaller penumbra (3.4±5.8 mm<sup>2</sup>) than did WKY (9.7±3.8, P=0.03). In WKY, 56% of the 1-hour penumbra area was incorporated into the ADC lesion by 6 hours, whereas in SHRSP, the small penumbra remained static owing to the temporal increase in both ADC lesion size and perfusion deficit.</p> <p><b>Conclusions:</b> First, SHRSP have significantly more ischemic damage and a smaller penumbra than do WKY within 1 hour of stroke; second, the penumbra is recruited into the ADC abnormality over time in both strains; and third, the expanding perfusion deficit in SHRSP predicts more tissue at risk of infarction. These results have important implications for management of stroke patients with preexisting hypertension and suggest ischemic damage could progress at a faster rate and over a longer time frame in the presence of hypertension.</p&gt

    Stroke penumbra defined by an MRI-based oxygen challenge technique: 2. Validation based on the consequences of reperfusion

    Get PDF
    Magnetic resonance imaging (MRI) with oxygen challenge (T2* OC) uses oxygen as a metabolic biotracer to define penumbral tissue based on CMRO2 and oxygen extraction fraction. Penumbra displays a greater T2* signal change during OC than surrounding tissue. Since timely restoration of cerebral blood flow (CBF) should salvage penumbra, T2* OC was tested by examining the consequences of reperfusion on T2* OC-defined penumbra. Transient ischemia (109±20 minutes) was induced in male Sprague-Dawley rats (n=8). Penumbra was identified on T2*-weighted MRI during OC. Ischemia and ischemic injury were identified on CBF and apparent diffusion coefficient maps, respectively. Reperfusion was induced and scans repeated. T2 for final infarct and T2* OC were run on day 7. T2* signal increase to OC was 3.4% in contralateral cortex and caudate nucleus and was unaffected by reperfusion. In OC-defined penumbra, T2* signal increased by 8.4%±4.1% during ischemia and returned to 3.25%±0.8% following reperfusion. Ischemic core T2* signal increase was 0.39%±0.47% during ischemia and 0.84%±1.8% on reperfusion. Penumbral CBF increased from 41.94±13 to 116.5±25 mL per 100 g per minute on reperfusion. On day 7, OC-defined penumbra gave a normal OC response and was located outside the infarct. T2* OC-defined penumbra recovered when CBF was restored, providing further validation of the utility of T2* OC for acute stroke management

    Stroke penumbra defined by an MRI-based oxygen challenge technique: 1. validation using [14C]2-deoxyglucose autoradiography

    Get PDF
    Accurate identification of ischemic penumbra will improve stroke patient selection for reperfusion therapies and clinical trials. Current magnetic resonance imaging (MRI) techniques have limitations and lack validation. Oxygen challenge T2* MRI (T2* OC) uses oxygen as a biotracer to detect tissue metabolism, with penumbra displaying the greatest T2* signal change during OC. [14C]2-deoxyglucose (2-DG) autoradiography was combined with T2* OC to determine metabolic status of T2*-defined penumbra. Permanent middle cerebral artery occlusion was induced in anesthetized male Sprague-Dawley rats (n=6). Ischemic injury and perfusion deficit were determined by diffusion- and perfusion-weighted imaging, respectively. At 147±32 minutes after stroke, T2* signal change was measured during a 5-minute 100% OC, immediately followed by 125 μCi/kg 2-DG, intravenously. Magnetic resonance images were coregistered with the corresponding autoradiograms. Regions of interest were located within ischemic core, T2*-defined penumbra, equivalent contralateral structures, and a region of hyperglycolysis. A T2* signal increase of 9.22%±3.9% (mean±s.d.) was recorded in presumed penumbra, which displayed local cerebral glucose utilization values equivalent to contralateral cortex. T2* signal change was negligible in ischemic core, 3.2%±0.78% in contralateral regions, and 1.41%±0.62% in hyperglycolytic tissue, located outside OC-defined penumbra and within the diffusion abnormality. The results support the utility of OC-MRI to detect viable penumbral tissue follow

    Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra

    Get PDF
    We describe a novel magnetic resonance imaging technique for detecting metabolism indirectly through changes in oxyhemoglobin:deoxyhemoglobin ratios and T2* signal change during ‘oxygen challenge’ (OC, 5 mins 100% O2). During OC, T2* increase reflects O2 binding to deoxyhemoglobin, which is formed when metabolizing tissues take up oxygen. Here OC has been applied to identify tissue metabolism within the ischemic brain. Permanent middle cerebral artery occlusion was induced in rats. In series 1 scanning (n=5), diffusion-weighted imaging (DWI) was performed, followed by echo-planar T2* acquired during OC and perfusion-weighted imaging (PWI, arterial spin labeling). Oxygen challenge induced a T2* signal increase of 1.8%, 3.7%, and 0.24% in the contralateral cortex, ipsilateral cortex within the PWI/DWI mismatch zone, and ischemic core, respectively. T2* and apparent diffusion coefficient (ADC) map coregistration revealed that the T2* signal increase extended into the ADC lesion (3.4%). In series 2 (n=5), FLASH T2* and ADC maps coregistered with histology revealed a T2* signal increase of 4.9% in the histologically defined border zone (55% normal neuronal morphology, located within the ADC lesion boundary) compared with a 0.7% increase in the cortical ischemic core (92% neuronal ischemic cell change, core ADC lesion). Oxygen challenge has potential clinical utility and, by distinguishing metabolically active and inactive tissues within hypoperfused regions, could provide a more precise assessment of penumbra

    The effectiveness and variation of acute medical units: a systematic review

    Get PDF
    Purpose: To evaluate the evidence for the effectiveness of acute medical units (AMUs) compared with other models of care and compare the components of AMU models. Data sources: Six electronic databases and grey literature sources searched between 1990 and 2014. Study selection: Studies reporting on AMUs as an intervention for unplanned medical presentations to hospital with the inclusion of all outcome measures/study designs/comparators. Data extraction: Data on study characteristics/outcomes/AMU components were extracted by one author and confirmed by a second. Data synthesis: Seventeen studies of 12 AMUs across five countries were included. The AMU model was associated with a reduction in-hospital length of stay (LOS) in all analyses ranging from 0.3 to 2.6 days; and a reduction in mortality in 12 of the 14 analyses with the change ranging from a 0.1% increase to a 8.8% reduction. Evidence relating to readmissions and patient/staff satisfaction was less conclusive. There was variation in the following components of AMUs: admission criteria, entry sources, functions and consultant work patterns. Conclusion: This review provides evidence that AMUs are associated with reductions in-hospital LOS and, less convincingly, mortality compared with other models of care when implemented in European and Australasian settings. Reported estimates may be affected by residual confounding. This review reports heterogeneity in components of the AMU model. Further work to identify what constitutes the key components of an AMU is needed to improve the quality and effectiveness of acute medical care. This is of particular importance given the escalating demand on acute services

    A fumonisins immunosensor based on polyanilino-carbon nanotubes doped with palladium telluride quantum dots

    Get PDF
    An impedimetric immunosensor for fumonisins was developed based on poly(2,5-dimethoxyaniline)-multi-wall carbon nanotubes doped with palladium telluride quantum dots onto a glassy carbon surface. The composite was assembled by a layer-by-layer method to form a multilayer film of quantum dots (QDs) and poly(2,5-dimethoxyaniline)- multi-wall carbon nanotubes (PDMA-MWCNT). Preparation of the electrochemical immunosensor for fumonisins involved drop-coating of fumonisins antibody onto the composite modified glassy carbon electrode. The electrochemical impedance spectroscopy response of the FB1 immunosensor (GCE/PT-PDMA-MWCNT/anti-Fms-BSA) gave a linear range of 7 to 49 ng L−1 and the corresponding sensitivity and detection limits were 0.0162 kΩ L ng−1 and 0.46 pg L−1 , respectively, hence the limit of detection of the GCE/PT-PDMA-MWCNT immunosensor for fumonisins in corn certified material was calculated to be 0.014 and 0.011 ppm for FB1, and FB2 and FB3, respectively. These results are lower than those obtained by ELISA, a provisional maximum tolerable daily intake (PMTDI) for fumonisins (the sum of FB1, FB2, and FB3) established by the Joint FAO/WHO expert committee on food additives and contaminants of 2 μg kg−1 and the maximum level recommended by the U.S. Food and Drug Administration (FDA) for protection of human consumption (2–4 mg L−1 )

    Molecular Characterization of Haemaphysalis Species and a Molecular Genetic Key for the Identification of Haemaphysalis of North America

    Get PDF
    Haemaphysalis longicornis (Acari: Ixodidae), the Asian longhorned tick, is native to East Asia, but has become established in Australia and New Zealand, and more recently in the United States. In North America, there are other native Haemaphysalis species that share similar morphological characteristics and can be difficult to identify if the specimen is damaged. The goal of this study was to develop a cost-effective and rapid molecular diagnostic assay to differentiate between exotic and native Haemaphysalis species to aid in ongoing surveillance of H. longicornis within the United States and help prevent misidentification. We demonstrated that restriction fragment length polymorphisms (RFLPs) targeting the 16S ribosomal RNA and the cytochrome c oxidase subunit I (COI) can be used to differentiate H. longicornis from the other Haemaphysalis species found in North America. Furthermore, we show that this RFLP assay can be applied to Haemaphysalis species endemic to other regions of the world for the rapid identification of damaged specimens. The work presented in this study can serve as the foundation for region specific PCR-RFLP keys for Haemaphysalis and other tick species and can be further applied to other morphometrically challenging taxa
    • …
    corecore