1,505 research outputs found

    The clinical and cost burden of coronary calcification in a Medicare cohort: An economic model to address under-reporting and misclassification

    Get PDF
    AbstractBackgroundCoronary artery calcification (CAC) is a well-established risk factor for the occurrence of adverse ischemic events. However, the economic impact of the presence of CAC is unknown.ObjectivesThrough an economic model analysis, we sought to estimate the incremental impact of CAC on medical care costs and patient mortality for de novo percutaneous coronary intervention (PCI) patients in the 2012 cohort of the Medicare elderly (≥65) population.MethodsThis aggregate burden-of-illness study is incidence-based, focusing on cost and survival outcomes for an annual Medicare cohort based on the recently introduced ICD9 code for CAC. The cost analysis uses a one-year horizon, and the survival analysis considers lost life years and their economic value.ResultsFor calendar year 2012, an estimated 200,945 index (de novo) PCI procedures were performed in this cohort. An estimated 16,000 Medicare beneficiaries (7.9%) were projected to have had severe CAC, generating an additional cost in the first year following their PCI of 3500,onaverage,or3500, on average, or 56 million in total. In terms of mortality, the model projects that an additional 397 deaths would be attributable to severe CAC in 2012, resulting in 3770 lost life years, representing an estimated loss of about 377million,whenvaluinglostlifeyearsat377 million, when valuing lost life years at 100,000 each.ConclusionsThese model-based CAC estimates, considering both moderate and severe CAC patients, suggest an annual burden of illness approaching $1.3 billion in this PCI cohort. The potential clinical and cost consequences of CAC warrant additional clinical and economic attention not only on PCI strategies for particular patients but also on reporting and coding to achieve better evidence-based decision-making

    Perioperative opioids and survival outcomes in resectable head and neck cancer: A systematic review.

    Get PDF
    BACKGROUND: Opioids are a mainstay in pain control for oncologic surgery. The objective of this systematic review is to evaluate the associations of perioperative opioid use with overall survival (OS) and disease-free survival (DFS) in patients with resectable head and neck cancer (HNC). METHODS: A systematic review of PubMed, SCOPUS, and CINAHL between 2000 and 2022 was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Studies investigating perioperative opioid use for patients with HNC undergoing surgical resection and its association with OS and DFS were included. RESULTS: Three thousand three hundred seventy-eight studies met initial inclusion criteria, and three studies representing 562 patients (intraoperative opioids, n = 463; postoperative opioids, n = 99) met final exclusion criteria. One study identified that high intraoperative opioid requirement in oral cancer surgery was associated with decreased OS (HR = 1.77, 95% CI 0.995-3.149) but was not an independent predictor of decreased DFS. Another study found that increased intraoperative opioid requirements in treating laryngeal cancer was demonstrated to have a weak but statistically significant inverse relationship with DFS (HR = 1.001, p = 0.02) and OS (HR = 1.001, p = 0.02). The last study identified that patients with chronic opioid after resection of oral cavity cancer had decreased DFS (HR = 2.7, 95% CI 1.1-6.6) compared to those who were not chronically using opioids postoperatively. CONCLUSION: An association may exist between perioperative opioid use and OS and DFS in patients with resectable HNC. Additional investigation is required to further delineate this relationship and promote appropriate stewardship of opioid use with adjunctive nonopioid analgesic regimens

    Chiral Multiplets of Heavy-Light Mesons

    Full text link
    The recent discovery of a narrow resonance in D_s+pi^0 by the BABAR collaboration is consistent with the interpretation of a heavy J^P(0+,1+) spin multiplet. This system is the parity partner of the groundstate (0-,1-) multiplet, which we argue is required in the implementation of SU(3)_L x SU(3)_R chiral symmetry in heavy-light meson systems. The (0+,1+)->(0-,1-)+pi transition couplings satisfy a Goldberger-Treiman relation, g_pi = Delta(M)/f_pi, where Delta(M) is the mass gap. The BABAR resonance fits the 0+ state, with a kinematically blocked principal decay mode to D+K. The allowed D_s+pi, D_s+2pi and electromagnetic transitions are computed from the full chiral theory and found to be suppressed, consistent with the narrowness of the state. This state establishes the chiral mass difference for all such heavy-quark chiral multiplets, and precise predictions exist for the analogous B_s and strange doubly-heavy baryon states.Comment: 10 pages; minor editorial revisions; recomputed M1 transitio

    Dynamics of entanglement for coherent excitonic states in a system of two coupled quantum dots and cavity QED

    Get PDF
    The dynamics of the entanglement for coherent excitonic states in the system of two coupled large semiconductor quantum dots (R/aB1R/a_{B}\gg 1) mediated by a single-mode cavity field is investigated. Maximally entangled coherent excitonic states can be generated by cavity field initially prepared in odd coherent state. The entanglement of the excitonic coherent states between two dots reaches maximum when no photon is detected in the cavity. The effects of the zero-temperature environment on the entanglement of excitonic coherent state are also studied using the concurrence for two subsystems of the excitonsComment: 7 pages, 6 figure

    HENMT1 and piRNA Stability Are Required for Adult Male Germ Cell Transposon Repression and to Define the Spermatogenic Program in the Mouse

    Get PDF
    piRNAs are critical for transposable element (TE) repression and germ cell survival during the early phases of spermatogenesis, however, their role in adult germ cells and the relative importance of piRNA methylation is poorly defined in mammals. Using a mouse model of HEN methyltransferase 1 (HENMT1) loss-of-function, RNA-Seq and a range of RNA assays we show that HENMT1 is required for the 2’ O-methylation of mammalian piRNAs. HENMT1 loss leads to piRNA instability, reduced piRNA bulk and length, and ultimately male sterility characterized by a germ cell arrest at the elongating germ cell phase of spermatogenesis. HENMT1 loss-of-function, and the concomitant loss of piRNAs, resulted in TE de-repression in adult meiotic and haploid germ cells, and the precocious, and selective, expression of many haploid-transcripts in meiotic cells. Precocious expression was associated with a more active chromatin state in meiotic cells, elevated levels of DNA damage and a catastrophic deregulation of the haploid germ cell gene expression. Collectively these results define a critical role for HENMT1 and piRNAs in the maintenance of TE repression in adult germ cells and setting the spermatogenic program

    Information Tradeoff Relations for Finite-Strength Quantum Measurements

    Get PDF
    In this paper we give a new way to quantify the folklore notion that quantum measurements bring a disturbance to the system being measured. We consider two observers who initially assign identical mixed-state density operators to a two-state quantum system. The question we address is to what extent one observer can, by measurement, increase the purity of his density operator without affecting the purity of the other observer's. If there were no restrictions on the first observer's measurements, then he could carry this out trivially by measuring the initial density operator's eigenbasis. If, however, the allowed measurements are those of finite strength---i.e., those measurements strictly within the interior of the convex set of all measurements---then the issue becomes significantly more complex. We find that for a large class of such measurements the first observer's purity increases the most precisely when there is some loss of purity for the second observer. More generally the tradeoff between the two purities, when it exists, forms a monotonic relation. This tradeoff has potential application to quantum state control and feedback.Comment: 15 pages, revtex3, 3 eps figure

    Delays in Leniency Application: Is There Really a Race to the Enforcer's Door?

    Get PDF
    This paper studies cartels’ strategic behavior in delaying leniency applications, a take-up decision that has been ignored in the previous literature. Using European Commission decisions issued over a 16-year span, we show, contrary to common beliefs and the existing literature, that conspirators often apply for leniency long after a cartel collapses. We estimate hazard and probit models to study the determinants of leniency-application delays. Statistical tests find that delays are symmetrically affected by antitrust policies and macroeconomic fluctuations. Our results shed light on the design of enforcement programs against cartels and other forms of conspiracy

    Evaluation of \u3csup\u3e18\u3c/sup\u3eF-IAM6067 as a sigma-1 receptor PET tracer for neurodegeneration in vivo in rodents and in human tissue

    Get PDF
    © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. The sigma 1 receptor (S1R) is widely expressed in the CNS and is mainly located on the endoplasmic reticulum. The S1R is involved in the regulation of many neurotransmission systems and, indirectly, in neurodegenerative diseases. The S1R may therefore represent an interesting neuronal biomarker in neurodegenerative diseases such as Parkinson\u27s (PD) or Alzheimer\u27s diseases (AD). Here we present the characterisation of the S1R-specific 18F-labelled tracer 18F-IAM6067 in two animal models and in human brain tissue. Methods: Wistar rats were used for PET-CT imaging (60 min dynamic acquisition) and metabolite analysis (1, 2, 5, 10, 20, 60 min post-injection). To verify in vivo selectivity, haloperidol, BD1047 (S1R ligand), CM398 (S2R ligand) and SB206553 (5HT2B/C antagonist) were administrated for pre-saturation studies. Excitotoxic lesions induced by intra-striatal injection of AMPA were also imaged by 18F-IAM6067 PET-CT to test the sensitivity of the methods in a well-established model of neuronal loss. Tracer brain uptake was also verified by autoradiography in rats and in a mouse model of PD (intrastriatal 6-hydroxydopamine (6-OHDA) unilateral lesion). Finally, human cortical binding was investigated by autoradiography in three groups of subjects (control subjects with Braak ≤2, and AD patients, Braak \u3e2 & ≤4 and Braak \u3e4 stages). Results: We demonstrate that despite rapid peripheral metabolism of 18F-IAM6067, radiolabelled metabolites were hardly detected in brain samples. Brain uptake of 18F-IAM6067 showed differences in S1R anatomical distribution, namely from high to low uptake: pons-raphe, thalamus medio-dorsal, substantia nigra, hypothalamus, cerebellum, cortical areas and striatum. Pre-saturation studies showed 79-90% blockade of the binding in all areas of the brain indicated above except with the 5HT2B/C antagonist SB206553 and S2R ligand CM398 which induced no significant blockade, indicating good specificity of 18F-IAM6067 for S1Rs. No difference between ipsi- and contralateral sides of the brain in the mouse model of PD was detected. AMPA lesion induced a significant 69% decrease in 18F-IAM6067 uptake in the globus pallidus matching the neuronal loss as measured by NeuN, but only a trend to decrease (-16%) in the caudate putamen despite a significant 91% decrease in neuronal count. Moreover, no difference in the human cortical binding was shown between AD groups and controls. Conclusion: This work shows that 18F-IAM6067 is a specific and selective S1R radiotracer. The absence or small changes in S1R detected here in animal models and human tissue warrants further investigations and suggests that S1R might not be the anticipated ideal biomarker for neuronal loss in neurodegenerative diseases such as AD and PD

    A Systematic Nomenclature for the <i>Drosophila </i>Ventral Nerve Cord

    Get PDF
    The ventral nerve cord (VNC) of Drosophila is an important model system for understanding how nervous systems generate locomotion. In this issue of Neuron, Court et al. define the structures of the adult VNC to provide an anatomical framework for analyzing the functional organization of the VNC.Drosophila melanogaster is an established model for neuroscience research with relevance in biology and medicine. Until recently, research on the Drosophila brain was hindered by the lack of a complete and uniform nomenclature. Recognizing this, Ito et al. (2014) produced an authoritative nomenclature for the adult insect brain, using Drosophila as the reference. Here, we extend this nomenclature to the adult thoracic and abdominal neuromeres, the ventral nerve cord (VNC), to provide an anatomical description of this major component of the Drosophila nervous system. The VNC is the locus for the reception and integration of sensory information and involved in generating most of the locomotor actions that underlie fly behaviors. The aim is to create a nomenclature, definitions, and spatial boundaries for the Drosophila VNC that are consistent with other insects. The work establishes an anatomical framework that provides a powerful tool for analyzing the functional organization of the VNC

    Movies of cellular and sub-cellular motion by digital holographic microscopy

    Get PDF
    BACKGROUND: Many biological specimens, such as living cells and their intracellular components, often exhibit very little amplitude contrast, making it difficult for conventional bright field microscopes to distinguish them from their surroundings. To overcome this problem phase contrast techniques such as Zernike, Normarsky and dark-field microscopies have been developed to improve specimen visibility without chemically or physically altering them by the process of staining. These techniques have proven to be invaluable tools for studying living cells and furthering scientific understanding of fundamental cellular processes such as mitosis. However a drawback of these techniques is that direct quantitative phase imaging is not possible. Quantitative phase imaging is important because it enables determination of either the refractive index or optical thickness variations from the measured optical path length with sub-wavelength accuracy. Digital holography is an emergent phase contrast technique that offers an excellent approach in obtaining both qualitative and quantitative phase information from the hologram. A CCD camera is used to record a hologram onto a computer and numerical methods are subsequently applied to reconstruct the hologram to enable direct access to both phase and amplitude information. Another attractive feature of digital holography is the ability to focus on multiple focal planes from a single hologram, emulating the focusing control of a conventional microscope. METHODS: A modified Mach-Zender off-axis setup in transmission is used to record and reconstruct a number of holographic amplitude and phase images of cellular and sub-cellular features. RESULTS: Both cellular and sub-cellular features are imaged with sub-micron, diffraction-limited resolution. Movies of holographic amplitude and phase images of living microbes and cells are created from a series of holograms and reconstructed with numerically adjustable focus, so that the moving object can be accurately tracked with a reconstruction rate of 300ms for each hologram. The holographic movies show paramecium swimming among other microbes as well as displaying some of their intracellular processes. A time lapse movie is also shown for fibroblast cells in the process of migration. CONCLUSION: Digital holography and movies of digital holography are seen to be useful new tools for visualization of dynamic processes in biological microscopy. Phase imaging digital holography is a promising technique in terms of the lack of coherent noise and the precision with which the optical thickness of a sample can be profiled, which can lead to images with an axial resolution of a few nanometres
    corecore