213 research outputs found

    Electrostatic Contributions of Aromatic Residues in the Local Anesthetic Receptor of Voltage-Gated Sodium Channels

    Get PDF
    Antiarrhythmics, anticonvulsants, and local anesthetics target voltage-gated sodium channels, decreasing excitability of nerve and muscle cells. Channel inhibition by members of this family of cationic, hydrophobic drugs relies on the presence of highly conserved aromatic residues in the pore-lining S6 segment of the fourth homologous domain of the channel. We tested whether channel inhibition was facilitated by an electrostatic attraction between lidocaine and {pi} electrons of the aromatic rings of these residues, namely a cation-{pi} interaction. To this end, we used the in vivo nonsense suppression method to incorporate a series of unnatural phenylalanine derivatives designed to systematically reduce the negative electrostatic potential on the face of the aromatic ring. In contrast to standard point mutations at the same sites, these subtly altered amino acids preserve the wild-type voltage dependence of channel activation and inactivation. Although these phenylalanine derivatives have no effect on low-affinity tonic inhibition by lidocaine or its permanently charged derivative QX-314 at any of the substituted sites, high-affinity use-dependent inhibition displays substantial cation-{pi} energetics for 1 residue only: Phe1579 in rNaV1.4. Replacement of the aromatic ring of Phe1579 by cyclohexane, for example, strongly reduces use-dependent inhibition and speeds recovery of lidocaine-engaged channels. Channel block by the neutral local anesthetic benzocaine is unaffected by the distribution of {pi} electrons at Phe1579, indicating that our aromatic manipulations expose electrostatic contributions to channel inhibition. These results fine tune our understanding of local anesthetic inhibition of voltage-gated sodium channels and will help the design of safer and more salutary therapeutic agents

    A Cation–π Interaction between Extracellular TEA and an Aromatic Residue in Potassium Channels

    Get PDF
    Open-channel blockers such as tetraethylammonium (TEA) have a long history as probes of the permeation pathway of ion channels. High affinity blockade by extracellular TEA requires the presence of an aromatic amino acid at a position that sits at the external entrance of the permeation pathway (residue 449 in the eukaryotic voltage-gated potassium channel Shaker). We investigated whether a cation–{pi} interaction between TEA and such an aromatic residue contributes to TEA block using the in vivo nonsense suppression method to incorporate a series of increasingly fluorinated Phe side chains at position 449. Fluorination, which is known to decrease the cation–{pi} binding ability of an aromatic ring, progressively increased the inhibitory constant Ki for the TEA block of Shaker. A larger increase in Ki was observed when the benzene ring of Phe449 was substituted by nonaromatic cyclohexane. These results support a strong cation–{pi} component to the TEA block. The data provide an empirical basis for choosing between Shaker models that are based on two classes of reported crystal structures for the bacterial channel KcsA, showing residue Tyr82 in orientations either compatible or incompatible with a cation–{pi} mechanism. We propose that the aromatic residue at this position in Shaker is favorably oriented for a cation–{pi} interaction with the permeation pathway. This choice is supported by high level ab initio calculations of the predicted effects of Phe modifications on TEA binding energy

    A Cation-π Interaction Discriminates among Sodium Channels That Are Either Sensitive or Resistant to Tetrodotoxin Block

    Get PDF
    Voltage-gated sodium channels control the upstroke of the action potential in excitable cells of nerve and muscle tissue, making them ideal targets for exogenous toxins that aim to squelch electrical excitability. One such toxin, tetrodotoxin (TTX), blocks sodium channels with nanomolar affinity only when an aromatic Phe or Tyr residue is present at a specific location in the external vestibule of the ion-conducting pore. To test whether TTX is attracted to Tyr401 of NaV1.4 through a cation-{pi} interaction, this aromatic residue was replaced with fluorinated derivatives of Phe using in vivo nonsense suppression. Consistent with a cation-{pi} interaction, increased fluorination of Phe401, which reduces the negative electrostatic potential on the aromatic face, caused a monotonic increase in the inhibitory constant for block. Trifluorination of the aromatic ring decreased TTX affinity by ~50-fold, a reduction similar to that caused by replacement with the comparably hydrophobic residue Leu. Furthermore, we show that an energetically equivalent cation-{pi} interaction underlies both use-dependent and tonic block by TTX. Our results are supported by high level ab initio quantum mechanical calculations applied to a model of TTX binding to benzene. Our analysis suggests that the aromatic side chain faces the permeation pathway where it orients TTX optimally and interacts with permeant ions. These results are the first of their kind to show the incorporation of unnatural amino acids into a voltage-gated sodium channel and demonstrate that a cation-{pi} interaction is responsible for the obligate nature of an aromatic at this position in TTX-sensitive sodium channels

    Source-Free Adaptation to Measurement Shift via Bottom-Up Feature Restoration

    Get PDF
    Source-free domain adaptation (SFDA) aims to adapt a model trained on labelled data in a source domain to unlabelled data in a target domain without access to the source-domain data during adaptation. Existing methods for SFDA leverage entropy-minimization techniques which: (i) apply only to classification; (ii) destroy model calibration; and (iii) rely on the source model achieving a good level of feature-space class-separation in the target domain. We address these issues for a particularly pervasive type of domain shift called measurement shift which can be resolved by restoring the source features rather than extracting new ones. In particular, we propose Feature Restoration (FR) wherein we: (i) store a lightweight and flexible approximation of the feature distribution under the source data; and (ii) adapt the feature-extractor such that the approximate feature distribution under the target data realigns with that saved on the source. We additionally propose a bottom-up training scheme which boosts performance, which we call Bottom-Up Feature Restoration (BUFR). On real and synthetic data, we demonstrate that BUFR outperforms existing SFDA methods in terms of accuracy, calibration, and data efficiency, while being less reliant on the performance of the source model in the target domain.Comment: ICLR 2022 (Spotlight

    Multiple Continental Radiations and Correlates of Diversification in Lupinus (Leguminosae): Testing for Key Innovation with Incomplete Taxon Sampling

    Get PDF
    Replicate radiations provide powerful comparative systems to address questions about the interplay between opportunity and innovation in driving episodes of diversification and the factors limiting their subsequent progression. However, such systems have been rarely documented at intercontinental scales. Here, we evaluate the hypothesis of multiple radiations in the genus Lupinus (Leguminosae), which exhibits some of the highest known rates of net diversification in plants. Given that incomplete taxon sampling, background extinction, and lineage-specific variation in diversification rates can confound macroevolutionary inferences regarding the timing and mechanisms of cladogenesis, we used Bayesian relaxed clock phylogenetic analyses as well as MEDUSA and BiSSE birth-death likelihood models of diversification, to evaluate the evolutionary patterns of lineage accumulation in Lupinus. We identified 3 significant shifts to increased rates of net diversification (r) relative to background levels in the genus (r = 0.18-0.48 lineages/myr). The primary shift occurred approximately 4.6 Ma (r = 0.48-1.76) in the montane regions of western North America, followed by a secondary shift approximately 2.7 Ma (r = 0.89-3.33) associated with range expansion and diversification of allopatrically distributed sister clades in the Mexican highlands and Andes. We also recovered evidence for a third independent shift approximately 6.5 Ma at the base of a lower elevation eastern South American grassland and campo rupestre clade (r = 0.36-1.33). Bayesian ancestral state reconstructions and BiSSE likelihood analyses of correlated diversification indicated that increased rates of speciation are strongly associated with the derived evolution of perennial life history and invasion of montane ecosystems. Although we currently lack hard evidence for "replicate adaptive radiations” in the sense of convergent morphological and ecological trajectories among species in different clades, these results are consistent with the hypothesis that iteroparity functioned as an adaptive key innovation, providing a mechanism for range expansion and rapid divergence in upper elevation regions across much of the New Worl

    Hands on Science to communicate innovations in research – engaging the public in coastal wave hazard measurements to inform management activities

    Get PDF
    Rising sea level is increasing the flood hazard from sea defence overtopping. New coastal schemes therefore need to be cost-effective and future-proofed. WireWall, with its portable, low cost measurement technology, is a system that can collect overtopping velocities and volumes to inform new scheme design and validate flood forecasting systems. Whilst the application of technology is important, it is equally vital that the scientific community actively engage with the public to raise awareness and understanding of coastal defence initiatives. To engage the public in understanding coastal hazard, how it is managed and how new advances in research informs management decisions, a portable demonstration model of the WireWall field rig has been developed. The tool is hands on, eye catching and user-friendly; and showcases new advances in technology to support coastal flood risk management thus educating the coastal community about changing hazard to promote public preparedness. This tool has successfully initiated in situ engagement between the public, coastal practitioners and researchers to develop support for a new scheme being planned at the WireWall study site. The future wellbeing of coastal communities depends on clear communication of new research that is making sense of changing seas. Here a methodology is presented that achieves just that. The communication facilitated through the design approach used to develop this tool, has turned knowledge and technological innovations into accessible information for government, business and the public

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS): Recent improvements to the sensor

    Get PDF
    AVIRIS is a NASA-sponsored Earth-looking imaging spectrometer designed, built and operated by the Jet Propulsion Laboratory. Spectral, radiometric and geometric characteristics of the data acquired by AVIRIS are given in Table 1. AVIRIS has been operational since 1989, however in each year since 1989 major improvements have been completed in most of the subsystems of the sensor. As a consequence of these efforts, the capabilities of AVIRIS to acquire and deliver calibrated imaging spectrometer data of high quality have improved significantly over those in 1989. Improvements to AVIRIS prior to 1992 have been described previously (Porter et al., 1990, Chrien et al., 1991, & Chrien et al., 1992). In the following sections of this paper we describe recent and planned improvements to AVIRIS in the sensor task

    Risk of 16 cancers across the full glycemic spectrum: a population-based cohort study using the UK Biobank.

    Get PDF
    INTRODUCTION: Diabetes is observed to increase cancer risk, leading to hypothesized direct effects of either hyperglycemia or medication. We investigated associations between glycosylated hemoglobin (HbA1c) across the whole glycemic spectrum and incidence of 16 cancers in a population sample with comprehensive adjustment for risk factors and medication. RESEARCH DESIGN AND METHODS: Linked data from the UK Biobank and UK cancer registry for all individuals with baseline HbA1c and no history of cancer at enrollment were used. Incident cancer was based on International Classification of Diseases - 10th Edition diagnostic codes. Age-standardized incidence rates were estimated by HbA1c category. Associations between HbA1c, modeled as a restricted cubic spline, and cancer risk were estimated using Cox proportional hazards models. RESULTS: Among 378 253 individuals with average follow-up of 7.1 years, 21 172 incident cancers occurred. While incidence for many of the 16 cancers was associated with hyperglycemia in crude analyses, these associations disappeared after multivariable adjustment, except for pancreatic cancer (HR 1.55, 95% CI 1.22 to 1.98 for 55 vs 35 mmol/mol), and a novel finding of an inverse association between HbA1c and premenopausal breast cancer (HR 1.27, 95% CI 1.00 to 1.60 for 25 vs 35 mmol/mol; HR 0.71, 95% CI 0.54 to 0.94 for 45 vs 35 mmol/mol), not observed for postmenopausal breast cancer. Adjustment for diabetes medications had no appreciable impact on HRs for cancer. CONCLUSIONS: Apart from pancreatic cancer, we did not demonstrate any independent positive association between HbA1c and cancer risk. These findings suggest that the potential for a cancer-inducing, direct effect of hyperglycemia may be misplaced

    An electrostatic interaction between TEA and an introduced pore aromatic drives spring-in-the-door inactivation in Shaker potassium channels

    Get PDF
    Slow inactivation of Kv1 channels involves conformational changes near the selectivity filter. We examine such changes in Shaker channels lacking fast inactivation by considering the consequences of mutating two residues, T449 just external to the selectivity filter and V438 in the pore helix near the bottom of the selectivity filter. Single mutant T449F channels with the native V438 inactivate very slowly, and the canonical foot-in-the-door effect of extracellular tetraethylammonium (TEA) is not only absent, but the time course of slow inactivation is accelerated by TEA. The V438A mutation dramatically speeds inactivation in T449F channels, and TEA slows inactivation exactly as predicted by the foot-in-the-door model. We propose that TEA has this effect on V438A/T449F channels because the V438A mutation produces allosteric consequences within the selectivity filter and may reorient the aromatic ring at position 449. We investigated the possibility that the blocker promotes the collapse of the outer vestibule (spring-in-the-door) in single mutant T449F channels by an electrostatic attraction between a cationic TEA and the quadrupole moments of the four aromatic rings. To test this idea, we used in vivo nonsense suppression to serially fluorinate the introduced aromatic ring at the 449 position, a manipulation that withdraws electrons from the aromatic face with little effect on the shape, net charge, or hydrophobicity of the aromatic ring. Progressive fluorination causes monotonically enhanced rates of inactivation. In further agreement with our working hypothesis, increasing fluorination of the aromatic gradually transforms the TEA effect from spring-in-the-door to foot-in-the-door. We further substantiate our electrostatic hypothesis by quantum mechanical calculations
    corecore