57 research outputs found

    Detection and Magnetic Source Imaging of Fast Oscillations (40–160 Hz) Recorded with Magnetoencephalography in Focal Epilepsy Patients

    Get PDF
    We present a framework to detect fast oscillations (FOs) in magnetoencephalography (MEG) and to perform magnetic source imaging (MSI) to determine the location and extent of their generators in the cortex. FOs can be of physiologic origin associated to sensory processing and memory consolidation. In epilepsy, FOs are of pathologic origin and biomarkers of the epileptogenic zone. Seventeen patients with focal epilepsy previously confirmed with identified FOs in scalp electroencephalography (EEG) were evaluated. To handle data deriving from large number of sensors (275 axial gradiometers) we used an automatic detector with high sensitivity. False positives were discarded by two human experts. MSI of the FOs was performed with the wavelet based maximum entropy on the mean method. We found FOs in 11/17 patients, in only one patient the channel with highest FO rate was not concordant with the epileptogenic region and might correspond to physiologic oscillations. MEG FOs rates were very low: 0.02–4.55 per minute. Compared to scalp EEG, detection sensitivity was lower, but the specificity higher in MEG. MSI of FOs showed concordance or partial concordance with proven generators of seizures and epileptiform activity in 10/11 patients. We have validated the proposed framework for the non-invasive study of FOs with MEG. The excellent overall concordance with other clinical gold standard evaluation tools indicates that MEG FOs can provide relevant information to guide implantation for intracranial EEG pre-surgical evaluation and for surgical treatment, and demonstrates the important added value of choosing appropriate FOs detection and source localization methods.Facultad de IngenieríaInstituto de Investigaciones en Electrónica, Control y Procesamiento de Señale

    Detection and Magnetic Source Imaging of Fast Oscillations (40–160 Hz) Recorded with Magnetoencephalography in Focal Epilepsy Patients

    Get PDF
    We present a framework to detect fast oscillations (FOs) in magnetoencephalography (MEG) and to perform magnetic source imaging (MSI) to determine the location and extent of their generators in the cortex. FOs can be of physiologic origin associated to sensory processing and memory consolidation. In epilepsy, FOs are of pathologic origin and biomarkers of the epileptogenic zone. Seventeen patients with focal epilepsy previously confirmed with identified FOs in scalp electroencephalography (EEG) were evaluated. To handle data deriving from large number of sensors (275 axial gradiometers) we used an automatic detector with high sensitivity. False positives were discarded by two human experts. MSI of the FOs was performed with the wavelet based maximum entropy on the mean method. We found FOs in 11/17 patients, in only one patient the channel with highest FO rate was not concordant with the epileptogenic region and might correspond to physiologic oscillations. MEG FOs rates were very low: 0.02–4.55 per minute. Compared to scalp EEG, detection sensitivity was lower, but the specificity higher in MEG. MSI of FOs showed concordance or partial concordance with proven generators of seizures and epileptiform activity in 10/11 patients. We have validated the proposed framework for the non-invasive study of FOs with MEG. The excellent overall concordance with other clinical gold standard evaluation tools indicates that MEG FOs can provide relevant information to guide implantation for intracranial EEG pre-surgical evaluation and for surgical treatment, and demonstrates the important added value of choosing appropriate FOs detection and source localization methods.Facultad de IngenieríaInstituto de Investigaciones en Electrónica, Control y Procesamiento de Señale

    Using diffusion MRI information in the Maximum Entropy on Mean framework to solve MEG/EEG inverse problem

    Get PDF
    International audienceMagnetoencephalography (MEG) and Electroencephalography (EEG) inverse problem is well-known to require regularization to avoid ill-posedness. Usually, regularization is based on mathematical criteria (minum norm, ...). Physiologically, the brain is organized in functional parcels and imposing a certain homogeneity of the activity within these parcels was proven to be an efficient way to analyze the MEG/EEG data [1][6]. The parcels information can be computed from diffusion Magnetic Resonances Imaging (dMRI) by grouping together source positions shared the same connectivity profile (computed as tractograms from diffusion images). In this work, three parcel-based inverse problem approaches have been tested. The first two approaches are based on minimum norm with added regularization terms to account for the parcel information. They differ by the use of a hard/soft constraint in the way they impose that the activity is constant within each parcel [4]. The third approach is based on the Maximum Entropy on Mean (MEM) framework [2]. The dMRI-base and random cortex parcellation, we test also the use of Multivariate Source Pre-localization (MSP) [5] in the source reconstruction

    Detection and Magnetic Source Imaging of Fast Oscillations (40–160 Hz) Recorded with Magnetoencephalography in Focal Epilepsy Patients

    Get PDF
    We present a framework to detect fast oscillations (FOs) in magnetoencephalography (MEG) and to perform magnetic source imaging (MSI) to determine the location and extent of their generators in the cortex. FOs can be of physiologic origin associated to sensory processing and memory consolidation. In epilepsy, FOs are of pathologic origin and biomarkers of the epileptogenic zone. Seventeen patients with focal epilepsy previously confirmed with identified FOs in scalp electroencephalography (EEG) were evaluated. To handle data deriving from large number of sensors (275 axial gradiometers) we used an automatic detector with high sensitivity. False positives were discarded by two human experts. MSI of the FOs was performed with the wavelet based maximum entropy on the mean method. We found FOs in 11/17 patients, in only one patient the channel with highest FO rate was not concordant with the epileptogenic region and might correspond to physiologic oscillations. MEG FOs rates were very low: 0.02–4.55 per minute. Compared to scalp EEG, detection sensitivity was lower, but the specificity higher in MEG. MSI of FOs showed concordance or partial concordance with proven generators of seizures and epileptiform activity in 10/11 patients. We have validated the proposed framework for the non-invasive study of FOs with MEG. The excellent overall concordance with other clinical gold standard evaluation tools indicates that MEG FOs can provide relevant information to guide implantation for intracranial EEG pre-surgical evaluation and for surgical treatment, and demonstrates the important added value of choosing appropriate FOs detection and source localization methods.Facultad de IngenieríaInstituto de Investigaciones en Electrónica, Control y Procesamiento de Señale

    Validation of Shared and Specific Independent Component Analysis (SSICA) for between-group comparisons in fMRI

    No full text
    Independent component analysis (ICA) has been widely used to study functional magnetic resonance imaging (fMRI) connectivity. However, the application of ICA in multi-group designs is not straightforward. We have recently developed a new method named shared and specific independent component analysis (SSICA) to perform between-group comparisons in the ICA framework. SSICA is sensitive to extract those components which represent a significant difference in functional connectivity between groups or conditions, i.e. components that could be considered specific for a group or condition. Here, we investigated the performance of SSICA on realistic simulations, and task fMRI data and compared the results with one of the state-of-the-art group ICA approaches to infer between-group differences. We examined SSICA robustness with respect to the number of allowable extracted specific components and between-group orthogonality assumptions. Furthermore, we proposed a modified formulation of the back-reconstruction method to generate group-level t-statistics maps based on SSICA results. We also evaluated the consistency and specificity of the extracted specific components by SSICA. The results on realistic simulated and real fMRI data showed that SSICA outperforms the regular group ICA approach in terms of reconstruction and classification performance. We demonstrated that SSICA is a powerful data-driven approach to detect patterns of differences in functional connectivity across groups/conditions, particularly in model-free designs such as resting-state fMRI. Our findings in task fMRI show that SSICA confirms results of the general linear model (GLM) analysis and when combined with clustering analysis, it complements GLM findings by providing additional information regarding the reliability and specificity of networks

    Model for defining and reporting Reference-based Validation Protocols in Medical Image Processing

    No full text
    International audienceObjectives. Image processing tools are often embedded in larger systems. Validation of image processing methods is important because the performance of such methods can have an impact on the performance of the larger systems and consequently on decisions and actions based on the use of these systems. Most validation studies compare the direct or indirect results of a method, with a reference that is assumed to be very close or equal to the correct solution. In this paper, we propose a model for defining and reporting reference-based validation protocols in medical image processing. Materials and Methods. The model was built using an ontological approach. Its components were identified from the analysis of initial publications (mainly reviews) on medical image processing, especially registration and segmentation, and from discussions with experts from the medical imaging community during international conferences and workshops. The model was validated by its instantiation for 38 selected papers that include a validation study, mainly for medical image registration and segmentation
    • …
    corecore