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Independent component analysis (ICA) has been widely used to study functional

magnetic resonance imaging (fMRI) connectivity. However, the application of ICA in

multi-group designs is not straightforward. We have recently developed a new method

named “shared and specific independent component analysis” (SSICA) to perform

between-group comparisons in the ICA framework. SSICA is sensitive to extract

those components which represent a significant difference in functional connectivity

between groups or conditions, i.e., components that could be considered “specific”

for a group or condition. Here, we investigated the performance of SSICA on realistic

simulations, and task fMRI data and compared the results with one of the state-of-the-art

group ICA approaches to infer between-group differences. We examined SSICA

robustness with respect to the number of allowable extracted specific components

and between-group orthogonality assumptions. Furthermore, we proposed a modified

formulation of the back-reconstruction method to generate group-level t-statistics maps

based on SSICA results. We also evaluated the consistency and specificity of the

extracted specific components by SSICA. The results on realistic simulated and real

fMRI data showed that SSICA outperforms the regular group ICA approach in terms

of reconstruction and classification performance. We demonstrated that SSICA is a

powerful data-driven approach to detect patterns of differences in functional connectivity

across groups/conditions, particularly in model-free designs such as resting-state fMRI.

Our findings in task fMRI show that SSICA confirms results of the general linear model

(GLM) analysis and when combined with clustering analysis, it complements GLM

findings by providing additional information regarding the reliability and specificity of

networks.
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INTRODUCTION

In the context of functional magnetic resonance imaging
(fMRI), the temporal and spatial structure of blood oxygenation
level–dependent (BOLD) signal make Independent Component
Analysis (ICA) a suitable method to study changes in brain
networks between different clinical populations or following
interventions which induce neural plasticity (Fox and Raichle,
2007; Albert et al., 2009; Calhoun et al., 2009; Assaf et al., 2010;
Vahdat et al., 2014).

In particular, the analysis of resting state data, with no
temporal constraint on the experimental design, underscores
the application of an exploratory multivariate method such as
ICA. Although ICA has been successfully applied to a single
homogeneous group of subjects (Calhoun et al., 2001; Beckmann
et al., 2005; Esposito et al., 2005), the comparison of individual
extracted networks between different experimental groups or
conditions is not a trivial task, which makes the subsequent
statistical inferences quite challenging (Calhoun et al., 2009; Sui
et al., 2009b; Vahdat et al., 2012).

Generally speaking, there are two ways of performing group
level ICA (gICA), none of them being fully appropriate for
between-group comparisons. One way is to aggregate the data
from all subjects and all groups in one single matrix, and then
to apply ICA irrespective of group membership information
(Assaf et al., 2010; Ma et al., 2011). Theoretically, the extracted
independent components (ICs) from this approach account for
the variability from all individuals in the dataset, so they tend
to represent those networks that are common to all groups.
We will refer to networks which are common across all groups
of subjects as shared components. Based on this concatenation
approach, some methods, such as back-reconstruction (Calhoun
et al., 2001) and dual regression (Filippini et al., 2009) have been
proposed in order to dissociate the contribution of each subject
of each group within gICA results, thus allowing statistical
comparisons.

However, these methods are still left with the problem of
gICA blind concatenation, which is the lack of access to group

membership information at the component-extraction level.
Consequently, it results in reduced sensitivity to extract between-

group differences at the first level of the analysis. Another
gICA approach consists of concatenating individuals from each
group separately and then applying ICA on the concatenated
matrices of each group (Calhoun et al., 2001; Albert et al.,
2009). As multiple ICA runs result in various decomposition
patterns across groups, the comparison between components
with different spatial characteristics is then quite difficult, and
making valid statistical inferences even more challenging. For
example, if a network is present among the extracted components
in one group and not in the other, it might be simply due
to insufficient number of extracted components in one of the
groups. Furthermore, comparing the power of two components,
which are comprised of similar brain voxels, is not statistically
correct, unless the weighting coefficients across the voxels in the
two spatial maps are similar.

Several methods have been proposed to overcome the
challenge of between-group comparisons using ICA (Guo and

Pagnoni, 2008; Sui et al., 2009a,b) or local linear discriminant
analysis (McKeown et al., 2007; Palmer et al., 2010). Generally,
these studies were able to increase sensitivity to detect group
differences by extracting a set of features from the datasets, and
maximizing the separability of the extracted features between
groups. As such, these methods operate in the feature space and
cannot be applied directly on the original time series of BOLD
data. This may limit their application in cases such as resting-
state analysis where task timing information is not available,
and feature extraction in time domain is challenging. Tensorial
ICA proposed by Beckmann and Smith (2005) is another group-
level ICA approach which provides a systematic and robust
way to compare results of ICA across different subjects by
decomposition of data in terms of their temporal, spatial, and
subject-dependent variations. However, in temporal domain,
tensorial ICA can only be applied to fMRI activation paradigms,
where a common temporal activation profile across subjects is
provided by the task, although its application on resting-state
data has been proposed by performing group ICA model on
voxel-wise power spectra profiles (Damoiseaux et al., 2008).

Furthermore, a unified framework for performing gICA has
been proposed (Guo and Pagnoni, 2008). The group structure
proposed by tensorial ICA (Beckmann and Smith, 2005) and the
GIFT software (Calhoun et al., 2001) can be formulated using
this general framework (Guo and Pagnoni, 2008). A group tensor
model was proposed in this study, in which the representative
mixing matrix time courses are allowed to be different across
groups. This group model is a natural extension of tensorial
ICA for multi-group data, but is more restricted in terms of the
subjects’ mixing matrices than the GIFT software. In another
study, Lukic et al. (2002) used time-delayed autocorrelations to
obtain independent signal components in a multi-group fMRI
design. Other gICA approaches include FENICA (Schopf et al.,
2010), which uses correlation coefficients between components
to extract spatially consistent networks across a group of
subjects, and CanICA (Varoquaux et al., 2010) that employs
generalized canonical correlation analysis to identify a subspace
of reproducible components in a group of subjects.

Other methods using clustering algorithms and multi-level
PCA have been proposed to group individual-level components
into a set of stable clusters (Esposito et al., 2005; Zhang et al.,
2010; Hyvarinen, 2011; Boly et al., 2012; Yang et al., 2012;
Hyvarinen and Ramkumar, 2013). Recently, Hyvarinen and
Ramkumar (2013) proposed a statistical approach based on
inter-subject or inter-session consistency of ICA components
to estimate the significance of group-level spatial maps. Other
researchers have proposed to use hierarchical clustering methods
on subject and group level component decomposition combined
with Bootstrap resampling techniques to extract stable and
reliable group level networks (Bellec et al., 2010; Boly et al.,
2012). The implementation of such approaches in between-group
designs has yet to be investigated.

We proposed a new algorithm, called Shared and Specific
Independent Component Analysis (SSICA), to address the
aforementioned limitations of the regular ICA approaches in
the context of multi-groups/factorial designs (Vahdat et al.,
2012). SSICA is based on adding a new constraint to the
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cost function of FastICA algorithm, originally proposed by
Hyvarinen and Oja (2000), to simultaneously deal with the
data of multiple groups within a single ICA decomposition. It
extracts and concurrently classifies ICs as being either shared
across groups or specific to one or a subset of groups (referred
to as specific components). The specific components represent
the pattern of differences between groups or conditions that,
generally, are of interest in neuroimaging studies. Basically,
in order to extract specific components related to one group
(called the “matching” group), a new cost function was defined
to minimize their projection magnitude on the data of the
other groups (called the “opposite” groups). Therefore, both
independence and orthogonality principles, respectively at the
component extraction level and at the group level, are considered
simultaneously in the SSICA optimization. The convergence of
SSICA algorithm is proved to be linear (Appendix B in Vahdat
et al., 2012; Supplementary Material), which suggests that both
the independencemaximization and the orthogonality constraint
imposed by a regularization term in the SSICA’s cost function
can be achieved with sufficient number of iterations. However,
it is noteworthy that if the orthogonality assumption cannot
be met through several iterations, the algorithm only optimizes
the independence criterion by reducing the number of specific
components to zero; i.e., only the “maximum” desired number of
specific components can be set in SSICA, and the actual number
of extracted ones depends on the convergence criteria.

The philosophy behind SSICA is that it allows one to
systematically distinguish between changes in which the structure
of activated network is different across groups (specific
components), from those in which the structure of network is
similar but the network power is different across groups (i.e.,
shared components with different time course’s power). The
change in the network structure between groups can be caused
by adding (or removing) areas from an existing network, or
even by recruiting the same areas but with different weightings
across activated voxels: all likely situations in functional brain
studies (Vahdat et al., 2014). Furthermore, the fact that SSICA
tries to minimize the projection magnitude of the specific
components does not mean that they have zero magnitude in
the “opposite” group. But, when the convergence is achieved,
it guaranties that the magnitude of specific components is
significantly lower in the “opposite” than in the “matching”
group. On the other hand, from a theoretical point of view,
because of the blind concatenation of data across groups with
no further information regarding group membership, regular
gICA approach is probably more efficient in detecting power
differences across shared components; although, in sufficiently
powered experiments, the application of back-reconstruction or
dual regression methods can be particularly useful to uncover
potential differences in the spatial maps of the extracted
components across groups/conditions (Calhoun et al., 2001).

The performance of SSICA has been investigated in Vahdat
et al. (2012), using one-dimensional and two-dimensional
simulated fMRI-like dataset using SimTB software (Erhardt et al.,
2012). In the current study, we aim to test the validity of the
SSICA method on real fMRI datasets, therefore evaluating for
the first time the performance of SSICA on high dimensionality

fMRI datasets. To do so, we collected two sets of fMRI data: (I)
one during resting-state periods based on which we generated
realistic simulations (hybrid fMRI) composed of arbitrary focal
activations (patches) added to real resting-state fMRI data, (II)
the other during a finger-tapping experiment with either visual
or auditory cue. Having finger-tapping cued with auditory and
visual stimuli allowed us to create two conditions, in which
either the auditory and sensorimotor areas or the visual and
sensorimotor areas are mostly activated. Using such paradigm,
our hypothesis is that the sensorimotor network should play
the role of a shared component, while the auditory and visual
networks participate as specific components, each preferentially
activated in one of the conditions. Adding patches of activation
to the resting-state fMRI dataset (hybrid fMRI data) has been
previously employed by Calhoun et al. (2001) and by our group
(Dansereau et al., 2014). Even though patches might not perfectly
mimic the actual resting-state networks, they make it possible to
compare performance of different methods on the resting-state
fMRI dataset by giving access to a controlled reference.

To adapt SSICA to the high dimensionality of fMRI data,
we propose some modifications to our original method by
improving the initialization of the iterative algorithm. In
addition, we adapted the principle of back-reconstruction
method proposed in Calhoun et al. (2001), in order to apply it
to the results of SSICA. Back-reconstruction allows projecting
group-level ICA results at the single subject level, thus providing
an efficient way to generate group-level t-statistics maps from the
extracted ICs.

Several simulations are provided to investigate characteristics
of SSICA where the number of networks specific to each
condition is not correctly set, as could occur in real circumstances
because of the high degree of variability in fMRI brain network
analysis. Also, we examined the properties of SSICA in the
presence of “so-called” partially-specific components, where the
specific networks’ orthogonally assumptions are not fully met.
The results of these simulations, as well as the results of SSICA
on the acquired finger-tapping data are compared with the time-
concatenation gICA method, implemented in the GIFT software
(Calhoun et al., 2001), http://mialab.mrn.org/software/gift. For
the finger-tapping task, we further evaluated the consistency and
the specificity of SSICA results, following the methodology we
previously described in Maneshi et al. (2014).

METHODS

Standard ICA and Group-Level ICA
In linear ICA, an observed T×Mmatrix of random variables Y is
decomposed based on the following generative model:

Y = AS (1)

Where S is anN×M dimensional matrix (N < T) whose rows are
mutually independent (sources), and A is a T×N mixing matrix.
Each row of matrix S and its corresponding column in the mixing
matrix constitute a single component or network. In the context
of fMRI connectivity analysis, extracting spatially independent
components (spatial ICA) is usually preferred to temporally ICs,
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which implies setting T to the number of acquired volumes
in time and M to the number of voxels. As a preprocessing
step in gICA fMRI analysis, usually two levels of principal
component analysis (PCA) are performed, one on the data of
each individual and another one on the concatenated data of all
individuals (Calhoun et al., 2009), although more recent studies
have suggested a three-step PCAdata reduction approach, similar
to the one used in SSICA, for multi-group fMRI data (Zhang
et al., 2010). Let n1 be the number of subjects in group-1, and n2

the number of subjects in group-2. AssumeY
j
i denotes theT

j
i×M

zero-mean data of subject i in group j, where Ti
j is the number of

acquired volumes for that subject, assuming that all the subjects
were acquired with the same spatial matrix (M voxels after co-
registration). The first level PCA reduces the dimensions of the

data of each subject in group j from T
j
i to Tj, using the following

projection F
j
i : X

j
i = F

j
iY

j
i .

In the spatial ICA framework, temporal concatenation of data
of different subjects in one single matrix is commonly used as a
method to perform gICA (Calhoun et al., 2009):

X̃1 =













X1
1
.
.
.

X1
n1













; X̃2 =













X2
1
.
.
.

X2
n2













[

X̃1

X̃2

]

= AS (2)

Where X̃1 and X̃2 are the concatenated reduced data of group-1
and group-2, respectively. A second level PCA data reduction is
then necessary to make the mixing matrix square, reducing the
dimension of the concatenated data from T1n1+T2n2 to N using

the following projection: X̃ = G̃

[

X̃1

X̃2

]

, where N is the desired

number of extracted components. As described earlier, the gICA
approach that concatenates data from subjects of both groups in
a single matrix (Equation 2) is preferable to performing separate
ICA on the data of each group. Hence, in this paper, we limited
the comparison of the SSICA to this gICA strategy and we used
GIFT implementation of this gICA strategy.

SSICA Model
In contrast to the regular gICA, SSICA employs a 3-step PCA
data reduction and whitening procedure on, (1) each individual
data, (2) each group’s concatenated data, and (3) multi-group
aggregate data, as illustrated in Figure 1. Although the first data
reduction step is not necessary for the proper operation of SSICA,
it is recommended in fMRI analysis due to the computational
burden. The subject-level reduction step uses the same projection

matrix, F
j
i described above.

At the second level, the temporally concatenated data of all
subjects of each group is whitened and PCA-reduced using the
following equation: Xj = HjX̃j, j = 1, 2 where H1 is an Ng1 ×

n1T1 whitening matrix for group-1, and H2 is an Ng2 × n2T2

whitening matrix for group-2. Here, X1 denotes the whitened
concatenated observed data matrix of group-1, and X2 denotes

the whitened concatenated data from group-2. As PCA extracts
directions of maximum variance in the observed data, the order
of subjects in each group does not change the extraction results.

At the third level, group data are aggregated row-wise, and
further whitened and PCA-reduced using an N × (Ng1 + Ng2)

projection matrix, G : X = G

[

X1

X2

]

. Here, N defines the

number of ICs that will be extracted by ICA. Let us assume that
group-1 and group-2 data can be reconstructed by Kg1 and Kg2

ICs, respectively (true number of components in each group).
Assuming K shared components among them (sshi , i = 1, ..,K),
we can then decompose the generative model given in Equation
(1) into two parts for each group: components shared between
the two groups (sshi ), and components specific to each group

(s
sp,1
i or s

sp,2
i ):

[

X1

X2

]

=

[

A sh
1 A

sp
1 0

A sh
2 0 A

sp
2

]





S sh

S
sp
1

S
sp
2



 (3)

where ssh and ssp,j are columns of Sj
T
, j = 1, 2 arranged according

to the shared and specific labeling, and ash,j , asp,j are the
corresponding columns in themixingmatricesAsh

j andA
sp
j . Here,

K1 = Kg1 − K is the true number of specific components of

group-1 (s
sp,1
i , i = 1, ..,K1), andK2 = Kg2−K is the true number

of specific components of group-2 (s
sp,2
i , i = 1, ..,K2). Note that,

the reduced dimension of aggregate data specified at the third
level PCA, N, should be set greater than or equal to the total
number of components in both groups (i.e., N ≥ K1 + K2 + K).
Also, in SSICA the maximum number of specific components
that can be extracted is M1 = N − Ng2 for group-1, and M2 =

N − Ng1 for group-2. Consequently, N,Ng1, and Ng2 should be
set such that N − Ng2 ≥ K1 and N−Ng1 ≥ K2.

Equation (3) gives the independent component factorization
for the aggregate matrix, with the additional constraint that two
blocks of the new mixing matrix should be zero. This constraint
can be integrated into the FastICA cost function (Hyvarinen,
1999) using the Lagrange multipliers method (Lang, 1987), and
then be optimized using Newton’s method (for further details on
solving these equations, see Vahdat et al., 2012). This resolution
provides the SSICA iterative formula (see also Equation 2.19 in
Vahdat et al., 2012), which allows, simultaneously, maximization
of independence at the component level and orthogonality of the
specific components at the group level.

Labeling of the Specific Components
Based on the Back-Reconstruction
In the current paper, to ensure that the iterative algorithm of
SSICA starts from an initial point closer to the local maxima and
consequently converges faster when applied to high dimensional
fMRI data, we modified the procedure for labeling of the specific
components at the very first iteration of the algorithm. Originally,
at each SSICA iteration, the mixing matrix was evaluated to
determine those components that have zero (or relatively small)
elements in one group of subjects (refer to Equation 2.23
in Vahdat et al., 2012). Then these components were treated
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FIGURE 1 | The SSICA algorithm schematic. There are three levels of data whitening and dimension reduction in SSICA. F, H, and G represent the projection

matrices at the first (subject), second (within-group), and the third (between-group) levels of data reduction, respectively.

as potential specific components and would enter the SSICA
iterative algorithm.

Here, we propose that, at the very first iteration of the
algorithm, the component membership (shared, specific group-
1, or specific group-2) be evaluated by comparing the estimated
component’s power across the two groups of subjects. To do so,
we use the percent variance accounted for (PVAF) as an estimate
of the percentage of variability that a single component (cth) can
explain in an individual’s data matrix, as follows:

(PVAF
j
i)c =
















1−

var
(

Y
j
i −

(

Ŷ
j
i

)

c

)

var
(

Y
j
i

)






× 100











% (4)

Where (Ŷ
j
i )c is the projection of the cth component on the data of

subject i in group j calculated based on the inverse of Equation

(B.9) (see Appendix B in Supplementary Material): (Ŷ
j
i )c =

(F
j
i)
+
B
j
iD

jÂcŜ, where Âc is constructed by making all, except for

the cth, columns of mixing matrix zero, and (.)+ denotes the
pseudo-inverse operator. var(.) denotes the average of variances
of different rows of a matrix (average in time). It should be

noted that in the subsequent iterations, however, the original
faster algorithm for shared/specific component classification (as
explained in Vahdat et al., 2012) was used.

So, at the first iteration of SSICA, for every component
its subject-specific PVAF is calculated based on Equation (4).
Then t-statistics are considered to compare the PVAF values
between the two groups of subjects. Those components that
have significantly greater PVAF values in one group of subjects
will be labeled as specific for that group. The significance level
was set to α = 0.05/N accounting for multiple comparisons
using Bonferroni correction. As explained earlier, in SSICA the
maximum number of specific components that can be extracted
is set by the user (N−Ng2 and N−Ng1 components for group-1
and group-2, respectively). If the number of specific components
in group-1 (or group-2) that passes α exceeds these maximum
values, only the first N−Ng2 (or N−Ng1) components showing
the most significant group differences (lowest p-values) will be
labeled as specific.

fMRI Acquisition
To test the validity of SSICA on real fMRI datasets, two datasets
were examined: (I) a hybrid fMRI dataset composed of patches
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added to real resting-state data (II) a dataset originating from a
finger-tapping experiment with visual or auditory cues. Twelve
right-handed healthy adults aged 18–24 were scanned at the
Montreal Neurological Institute (MNI). The study was approved
by the MNI ethics committee and subjects participated in
the research after giving written informed consent. Functional
images were continuously acquired using a 3T MR scanner
(Siemens Trio, Germany) with a 32-channel head coil. MP-RAGE
anatomical images were first acquired (1 mm slice thickness,
256 × 256 matrix; TE = 2.98 ms and TR = 2300 ms; flip
angle 9◦) and used for superposition of the functional images
and inter-subject group co-registration. The functional data were
acquired using a T2∗-weighted EPI sequence (3.5× 3.5× 3.5mm
voxels, 39 slices, 64 × 64 matrix; TE = 25 ms and TR = 2000
ms; flip angle 70◦). Each subject’s functional scan comprised of
three conditions: visual cued finger-tapping (VFT), auditory cued
finger-tapping (AFT), and resting-state (RS). Each condition was
repeated over 2 runs of 200 s each. Resting-state was defined as
a state of relaxed wakefulness when subjects had their eyes open
and were instructed to focus on a cross in the middle of a white
screen. In the VFT condition, subjects were required to perform
finger tapping at a constant pace in accordance with visual cues.
Subjects were instructed to tap their right thumb to index or
middle finger in accordance with a color-coded blinking (200 ms
on period) circle presented at 1Hz frequency in a pseudo-random
sequence with the same probability of occurrence for each finger.
For the AFT task, subjects tapped their right thumb to index
or middle finger as explained above, but in accordance with an
auditory tone having a frequency switching between two values.
Using a computer playback system, auditory tones (duration of
200 ms) were presented binaurally through a headset every 1 s.
In all conditions subjects were asked to focus on a cross in the
middle of a white screen.

fMRI Preprocessing
Data processing was carried out using the FMRIB Software
Library (FSL), www.fmrib.ox.ac.uk, Oxford U.K., FSL version
4.1 (Beckmann et al., 2003). The following preprocessing
steps were applied to the functional data: (1) removal of
the first two volumes of each run to allow for equilibrium
magnetization, (2) slice timing correction using Fourier-space
time-series phase-shifting, (3) non-brain tissue removal, (4)
rigid-body motion correction, (5) global intensity normalization
of all volumes of each run as implemented in FSL, (6) spatial
smoothing using a Gaussian kernel with 6mm full width at
half maximum, and (7) high-pass temporal filtering with cut
off frequency of 0.01 Hz. Conversion of the low-resolution
functional data to the average standard space (MNI152) involved
two transformations. First, from low resolution EPI image
to high-resolution T1-weighted structural image (using a 7
degree-of-freedom affine transformation), and second, from
T1-weighted structural image to the average standard space
(using a 12 degree-of-freedom linear affine transformation, voxel
size = 2 × 2 × 2mm). The preprocessed and MNI-transformed
functional data were further sub-sampled into 4mm isotropic
space.

Hybrid fMRI Data Generation
We randomly divided the twelve subjects into two groups,
resulting in 12 resting-state functional runs (two runs for
each of six subjects) in each group. To generate hybrid fMRI
data, we added focal patches of activations to the sub-sampled
normalized functional data of each subject during the resting-
state condition. As shown in Figure 2 top row, five different
patches configurations were generated. Each patch was actually
composed of 2 or 3 distinct volumes of interest, consisting in
clusters of neighboring voxels, which will be further denoted as
blobs in this study. So each patch was composed of 2 or 3 blobs.

The spatial intensity distribution within each blob was set
using a gradient of relative amplitudes ranging from 0.7 to 1.3,
increasing from the outer to the central region, with averaged
relative amplitude of one. We refer to the spatial intensity
distribution of each patch as the ground-truth sp (a spatial map
of M voxels). This spatial intensity distribution is multiplied by
a time course and then added to the real resting-state fMRI data
of each subject. For each subject and each patch, the simulated
time course was defined separately using different realizations of
standard zero-mean Gaussian signals band-pass filtered between
0.01 and 0.1 Hz to mimic the neuronal-related portion of resting-
state BOLD fMRI time series (Fox and Raichle, 2007). The
variance of the Gaussian distribution used to generate patch
time-series in each subject was set to the average variance of all
the brain voxels’ time series during resting state. The power of
each patch was defined as the ratio of that patch’s time-series
variance to the average variance of all the brain voxels’ time series
during resting state. To generate simulations at different SNRs,
we multiplied the simulated patch’s time-series by a factor, called
the signal to noise ratio (SNR). In the simulations, SNRwas varied
from 0.5 to 1 (resulting in simulated patches’ power of 0.5–1,
respectively) in steps of 0.1 to have a realistic model of the added
activities. At a SNR of 1, the patches were always found within
the 20 strongest (measured by the amount of explained variance)
ICA components. As a comparison, the average power values
calculated from the extracted time-series of the default mode,
auditory and visual networks during the resting-state conditions
were 1.04, 1.01, and 1.12, respectively. Note that for generating
a specific patch of one group, the SNR of that patch was set to
zero in the subjects of the opposite group, while for the shared
patches the SNRwas non-zero for all subjects. In our simulations,
we randomly generated many different realizations by setting
each patch as either specific or shared. To account for anatomical
variability between subjects, we introduced axial translations in
the patch location. We shifted the embedded patches of each
subject by a value randomly selected from –n/2 to n/2 voxels in
the axial plane (voxel size= 4mm isotropic; anatomical noise up
to n= 6 voxels, i.e., 12mm in each direction).

Patch Extraction Performance
To investigate reconstruction performance of the SSICA, we
measured reconstruction error and similarity between the
ground-truth signals (the simulated patches: sp) and the extracted
patches (s̃p) by calculating the spatial root mean square error
(RMSE) and the spatial correlation r2 between sp and s̃p,
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FIGURE 2 | Hybrid fMRI data generation. Top row: the source patches used to generate the hybrid fMRI data set. From left to right, it illustrates the patches (or

components), which are located in the cerebellum, sensorimotor area, anterior cingulate and lingual regions, paracingulate gyrus and precuneus, and bilateral

opercular cortex and middle visual area. Middle and bottom rows show the t-statistics maps of those components, respectively, extracted by the SSICA and the

regular time-concatenation gICA approach, which show the highest correlation with the ground truth patches. In this example, the 2 patches shown on columns 1

and 2 were specific to group-1, the 2 patches on columns 4 and 5 were specific to group-2 and the one on column 3 was shared between groups. The specific maps

are generated using two-sample t-statistics, while the shared map is generated using one-sample t-statistics. The SSICA results are more similar to the ground truth

specific patches compared to the regular gICA approach.

defined as:

RMSE =

√

1

M

∑M

m=1

(

spm − s̃pm
)2
s, r2 = [corr

(

sp, s̃p

)

]
2

(5)

Where, spm and s̃pm correspond to the mth voxel of the pth
ground-truth patch and its corresponding extracted component,
respectively. M is the number of voxels, and corr(.) represents
Pearson correlation. Note that, the Z-score spatial maps (spatially
demeaned and divided by standard deviation of M voxels within
a brain mask) of the ground-truth and the extracted components
were used to calculate the RMSE and r2 measures. Also, in order
to acquire a clean map of activation and to be more sensitive to
areas of significant activation, the Z-score spatial maps were first
thresholded at |Z| > 2.3 (p < 0.01, uncorrected).

To quantify performance of shared and specific components
classification, receiver operating characteristics (ROC) analysis
was considered. We had to adapt ROC methodology for our
evaluation and comparison between SSICA and gICA. To do
so, we first defined as true positive class labels the simulated
shared components and as true negative class labels the simulated
specific components of the ground truth. In this analysis, we
also arbitrarily selected the templates of three highly-reported
resting-state networks including default mode, auditory, and

visual networks, based on a previous study of resting-state ICA
analysis (Damoiseaux et al., 2006), and included them as ground-
truth maps of true positive class labels since we expect them to be
present in our acquired resting-state data as well.

Therefore, for the five patches and the three resting-state
templates, we identified those extracted components, which
had the highest spatial correlation r2 with their corresponding
ground-truth templates. For each of those components identified
by SSICA, it was labeled as predicted positive when classified
as either a shared component or as one of the three resting
state networks. Consequently, it was labeled as predicted negative
when classified as a specific component for one group.

For SSICA, there is actually an explicit threshold used to
classify every component as shared or specific and this threshold
is applied at every iteration of the SSICA algorithm (see Equation
2.23 in Vahdat et al., 2012 for more details). Therefore, we ran
SSICA multiple times with 20 different threshold values ranging
from 0 to 1, to get the classification performance at different
points along the ROC curve.

For the regular gICA approach, the “predicted class label”
was defined using the following procedure. First, the back-
reconstruction method implemented in GIFT software was used
on the group-level maps generated by applying ICA on the
time-concatenated data of all subjects, in order to assess the
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contribution of every subject to every component detected
using gICA (see Appendix A in Supplementary Material for
further details). Afterwards, for each identified component,
two-sample t-statistics were performed on back-reconstructed
data to contrast the subject-specific maps of the two groups
(significant voxels were defined for a p-value < α; uncorrected,
α = 0.01 or 0.001). Two different values for α were considered
to ensure that the pattern of results was not dependent on
the choice of α. The predicted class label for each identified
component was set positive, i.e., more likely corresponding to a
shared component, if the number of significantly active voxels
in the two-sample t-test map was less than a threshold, thus
suggesting no group differences. On the other hand, the predicted
class label was set negative, i.e., more likely corresponding to
a specific component, when the number of significant voxels
(positive or negative t-values) was larger than a threshold, thus
suggesting a significant group difference. Consequently, when
building the whole ROC curve, classification performance was
assessed by varying this threshold (the minimum number of
active voxels in the two-sample t-test map which reveals a non-
zero difference map) over its possible range (ranging from zero to
maximum number of activated voxels across all components and
subjects).

The optimal point in the ROC curve (a point with the least
sum of squared false positive and false negative ratios) was
identified tomeasure the best classifier performance in the SSICA
and the regular gICA method.

Robustness of SSICA to the Number of
Extracted Specific Components
As described in Section Standard ICA and Group-Level ICA, the
maximum number of specific components that can be extracted
in each group depends on the second and third data reduction
steps (maximumM1 = N − Ng2 specific components for group-
1, andM2 = N − Ng1 for group 2). To investigate the robustness
of SSICA to various choices of these parameters, we assessed the
performance when M1 (or M2) was set less or more than the
actual number of simulated specific components, Kg1 (or Kg2).

For the condition in which M1 < Kg1 (or M2 < Kg2), we
generated several datasets by randomly assigning two patches as
specific component in each group (Kg1 = Kg2 = 2) and one
patch as shared component, but asked the algorithm to extract,
at most, one specific component per group (M1 = M2 = 1).
We examined whether the SSICA shows some preference in
extracting one specific component over the other one, according
to their strengths. To evaluate this, the strength, defined as the
patch SNR, of one of the two specific components in each group
was setm times larger than the strength of the other one. We will
refer to m simulation parameter as the “unbalance ratio.” This
simulation was designed to examine whether SSICA classifies the
strongest among the two patches as specific, randomly selects
one based on initialization, or pools the two together in one
component.

To assess such behavior of the algorithm, we defined a
similarity ratio to quantify the degree to which the extracted
specific component correlated to the weak or to the strong

simulated patch as follows:

similarity ratio =
r1

√

r12 + r22
(6)

Where r1 (respectively , r2) represents the spatial correlation
between the extracted specific component and the strong
(respectively, the weak) simulated patch.

For the condition in which M1 > Kg1 (or M2 > Kg2), we
generated several datasets by randomly assigning one patch as
specific component for each group Kg1 = Kg2 = 1 and the rest as
shared components, but asked the algorithm to extract up to two
specific components per group (M1 = M2 = 2). In this situation,
it is possible that SSICA split the specific patch into 2 specific
components, depending on the degree of temporal similarity or
correlation among blobs within the simulated patch. To quantify
this effect, we introduced some variability among the different
blobs of the same patch by adding different realizations of zero-
mean uncorrelated Gaussian noise to the time course of each
blob. Accordingly, “within-component variability,” k, was defined
as the ratio of Gaussian noise variance to the average variance
of all the brain voxels’ time series during resting state. In such a
condition, we might observe three types of results: (i) repetition:
the specific patch is repeated in both components extracted
as specific, (ii) split: the specific patch is splitted between the
extracted specific components or (iii) noise: the specific patch
is represented in just one of the extracted specific components
(hence the other one is an unrelated noise component). To
distinguish these conditions, we propose the following metric,
named splitting factor, which we estimated for each group:

splitting factor = maxl∈blobs (
mean(Zl,weak)

mean(Zl,weak)+mean(Zl,strong)
)

(7)

Among the two extracted specific components in each group,
weak (respectively, strong) refers to the one which shows a lower
(respectively, higher) correlation with the ground-truth specific
patch. mean(Zl,weak) denotes the averaged Z-score values within
the l-th blob of the weak component, andmean(Zl,strong) denotes
the averaged Z-score values within the l-th blob of the strong
component. This ratio ranges between 0 and 1. For the values
around 0.5, the weak component includes at least one blob that is
already presented in the strong one [cf. the repetition condition
(i)]. Values close to one represent the situation in which there is
at least one blob in the weak component that is not present in
the strong one [cf. the split condition (ii)]. Finally, values close to
zero indicate that no blob of the specific patch was presented in
the weak component [cf. noise condition (iii)].

Robustness of SSICA with Regards to the
Orthogonally Assumptions
In fMRI connectivity analysis, two different experimental
conditions may activate the same set of brain clusters, but
with different relative weighting of voxels within each activation
cluster. This represents a case in which the specific networks
of each condition (group) have overlapping activated clusters
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across conditions (group); hence, the projection of some specific
networks in the opposite group might be non-zero. Furthermore,
in fMRI datasets a brain network that represents the pattern
of differences across groups is not usually fully absent in
one of the groups, but rather less intense. Nevertheless, the
fact that the Lagrange multiplier approach considered for the
group orthogonality constraint in SSICA aims at minimizing the
projection magnitude of the specific components does not mean
that these specific components should have zero magnitude in
the “opposite” group. But, practically, it ensures that, when the
convergence is achieved, the magnitude of specific components
is significantly lower in the “opposite” than in the “matching”
group.

To test this idea, we generated different datasets in which
some patches were embedded in both groups but with different
strengths. We manipulated the strength of these “partially-
specific” patches by setting to 1 the SNR value in the matching
group, and from 0.1 to 0.9 the SNR of the same component in
the opposite group (named power ratio). We examined whether
SSICA extracts and labels these partially-specific patches as
shared or specific components when varying the power ratio.

Analysis of Finger-Tapping fMRI Dataset
First, we analyzed the fMRI data obtained during finger-
tapping conditions cued by visual and auditory stimuli
using a block-design general linear model (GLM) approach
as implemented in the Feat software, part of FSL (see
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT). Following the regular
preprocessing steps explained in Section fMRI Preprocessing,
VFT and AFT conditions were concatenated with the subsequent
baseline RS conditions. Each run of AFT or VFT was considered
as one task block and was contrasted with the RS runs in a GLM.
For each subject, a fixed-effect analysis was performed to average
the two runs of the same condition. Then, the subject-level
statistics images were input to a group-level GLM to calculate the
following contrasts: (VFT − RS) − (AFT − RS), (AFT − RS) −
(VFT − RS), and (VFT − RS) + (AFT − RS). To find peaks of
activity, a group level mixed-effects model corrected for multiple
comparisons at the cluster level was estimated using the FEAT
software (Z > 2.3, corrected using Gaussian random field theory,
corrected cluster p < 0.05).

For ICA network analysis, all the runs of VFT and
AFT conditions (24 runs per condition, 12 subjects) were time-
concatenated. GIFT and SSICA were applied on these time-
concatenated data. For a fair comparison, similar to what was
used for the analysis of simulated patches, the FastICA algorithm
(Hyvarinen, 1999) was selected as the ICA method used in
GIFT software. The dimension of each individual subject’s data

was first reduced from 2 × 100 to 50 in both algorithms (F
j
i

projector). We selected this value as it accounted for at least
98% of variance (mean ± std = 98.6 ± 0.3) in every subject’s
data in our task-based dataset. At the group level, N = 30
components were extracted in both algorithms (G projector).
In order to test the stability of our results with respect to
the total number of extracted components, we did additional
analyses by extracting 40 and 50 components at the group level
in both SSICA and GIFT. According to our hypothesis based

on the experimental design, we should only extract one specific
component per condition. However, in order to be more flexible
to the extraction of specific components, we set the number of
specific components per condition (VFT and AFT) to 3. This
implies setting the second level data reduction dimension to
Ng1 = Ng2 = N−3 = 27 on the concatenated data of either VFT
or AFT (Hj projector). Therefore, the size of each condition’s
concatenated data was first reduced from (12 × 50) to 27, and
then the size of the concatenated conditions data was reduced
from 2∗27 to 30 at the third level PCA. The back reconstruction
method followed by two-sample t-statistics was performed on
the results of both algorithms to identify the specific networks
corresponding to each condition (thresholded at t = 3.17, p <

0.005, uncorrected).
In GIFT software, two-sample t-statistics were performed over

a mask defined by the thresholded map (t > 1.5) of one-sample
t-statistics for all subjects and conditions, as suggested by (Assaf
et al., 2010), to explore results within the general activation map
of the selected component only.

Analysis of the Consistency of the
Extracted Specific Components in Task
fMRI
The SSICA requires as input the number of networks specific
to each group but the true value of this number is not known
a priori, especially when dealing with real data. Following the
methodology already proposed in our previous study (Maneshi
et al., 2014), to test the consistency of the extracted specific
components in task fMRI dataset, we decided to apply SSICA
multiple times with different initializations and numbers of
extracted specific components. Considering four possible values
for the number of specific components (while excluding the
situation where 0 specific networks are extracted in both
conditions) and repeating the whole procedure five times (to
account for the effect of the ICA initialization in algorithmic
instability Himberg et al., 2004), we ended up with 15 × 5 = 75
SSICA estimations for further analysis.

The clustering method proposed by Hyvarinen and
Ramkumar (2013) was further used to find the most reliable
specific networks among all the identified specific components
in each condition. The outputs of this analysis were several
clusters of specific components with the highest within-cluster
similarities and the lowest between-clusters similarities (see
Maneshi et al., 2014 for further explanation regarding the basis
of this clustering method). To obtain a representation of each
cluster, all the components within that cluster were averaged.
Results, overlaid on standard MNI152 at 1 mm resolution
for visualization purposes, were then thresholded (Z > 2.3)
and labeled according to the Harvard–Oxford cortical and
subcortical (Desikan et al., 2006), and Juelich histological atlases
(Eickhoff et al., 2005).

Analysis of the Specificity of the Extracted
Specific Networks in Task fMRI
In order to quantify the degree of specificity of each specific
network (that is, the ratio of explained power in the matching
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group in contrast to the opposite group), we calculated, for
each individual, a measure of functional connectivity in each
detected reliable specific network (visual or auditory) and
compared it across conditions. Here, we defined the strength of
functional connectivity within a network based on the power
of its corresponding time-course in the frequency band of the
signal [0–0.25 Hz; the highest identifiable frequency is 0.5 ×

TR (Nyquist frequency)]. For each specific network and each
subject, we used the subject’s fMRI data (dependent variable)
and the network’s spatial map (independent variable) in a GLM
to find one associated time-course per network and subject.
We then used power spectrum analysis (with the standard
Hamming window as implemented in MATLAB) to assess the
power of this estimated time-course within the 0–0.25 Hz
frequency band. For each condition and each specific network,
power was averaged across subjects within that condition to
calculate the strength of functional connectivity within that
network.

RESULTS

Hybrid fMRI Data Analysis
In simulations using hybrid fMRI data, different combinations of
patches as shared or specific components and with various values
of anatomical noise and SNR were generated (see Section Hybrid
fMRI Data Generation for Details). In all analyses, the FastICA
algorithm was applied on the sphered data using the hyperbolic
tangent as the derivative of contrast function and the symmetric
algorithm as the decorrelation approach (Hyvarinen, 1999).
Figure 2 illustrates the results of the SSICA and the regular gICA
approaches on a sample SSICA run using anatomical noise = 2
voxels and SNR = 1. Figure 2 top row shows the ground-truth
patches as described before. In this example, from the left, the
first two patches were embedded as specific components of
group-1, the middle patch as shared component between groups,
and the last two as specific components of group-2. Figure 2
middle and bottom rows show the components extracted by
applying respectively the SSICA and the regular gICA approaches
(using time-concatenation and back-reconstruction methods;
see Section Labeling of the Specific Components Based on the
Back-Reconstruction). For each method, components exhibited
the highest spatial correlation r2 with the ground truth patches
are presented. As illustrated in this example, the spatial maps
of the specific patches are reconstructed more accurately in the
SSICA compared to the regular gICA approach. Also, unlike
SSICA, the gICA approach resulted in underestimation of the
spatial extent of some blobs together with some false positive
activated clusters outside the patch boundaries. For each method,
we also identified and compared several highly-reproducible
resting-state networks (including default mode network, visual,
motor, and auditory) to examine the similarity of SSICA and
the regular gICA in extracting other shared networks. The
results of this analysis, shown in Supplementary Figure 1,
suggest that both methods produced highly comparable
connectivity maps related to common resting-state
networks.

Quantitative Evaluation of Patch Extraction

Performance
To investigate patch reconstruction performance, RMSE and
r2 measures were calculated and averaged over the results
of the SSICA and the regular gICA approach on a large
number of hybrid fMRI data sets. Data sets were generated
using various combinations of patches as shared and specific
components (100 random permutations of up to 2 specific
patches per group) at different anatomical noise levels (n
= 0, 1, 2, 3 voxels) and with different SNR values (0.5–
1 in 0.1 steps). In total, 30 components were extracted
by both algorithms. In SSICA, up to 3 components were
allowed to be extracted as specific component per group.
Among all extracted components, the five showing the highest
correlation with the source patches were selected to estimate
extraction performance using the metric defined in Equation
(5). Figure 3 illustrates RMSE and r2 averaged over all extracted
patches and permutations at different SNR and anatomical
noise levels, for the SSICA in red and the regular gICA
approach in blue. At each SNR and anatomical noise level,
the curves show the mean performance averaged over 2000
(100 permutations × 4 anatomical noise level × 5 patches)
and 3000 (100 permutations × 6 SNR levels × 5 patches)
extracted patches, respectively. The SSICA outperforms the
regular gICA approach, especially in cases where the strength
of the desired component was low, or where the between
subject variability in the location of the desired component
(as expected when registration errors are still present) was
high.

Patch Classification Performance
To investigate classification performance of shared and specific
patches classification, ROC analysis was used as described
in Section Patch Extraction Performance. The same above-
mentioned parameters for SNR and anatomical noise levels,
used in generating Figure 3, were used for the SSICA and the
regular gICA approach. The ROC curves are based on the
classification of the five simulated patches and three highly-
reported resting-state networks (i.e., default mode, auditory,
and visual networks) as described in Methods. Since in the
SSICA the classification threshold needs to be specified in
advance, we ran the algorithm multiple times (5 permutations)
with 20 different threshold values ranging from 0 to 1, to
estimate the ROC curve. Figure 4 shows the ROC curves
at different SNR values for the SSICA in red, the regular
gICA approach with α = 0.01 in blue, and the regular gICA
approach with α = 0.001 in green (α is the two-sample t-
test significance threshold). The ROC curves at each SNR
level is generated using classification of 3200 (5 × 4 × 20
× 8) extracted components. Although the total number of
active voxels in the difference map varies with the choice
of α, as shown in Figure 4 the classification performance
is quite stable using different α values, and is constantly
superior in the SSICA compared to the regular approach.
Particularly, the benefits of SSICA in the classification of specific
patches (lower false positive rate) are greater at low SNR
values.
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FIGURE 3 | Patch extraction performance. Figure shows r2 (left panels) and RMSE (right panels) averaged over all extracted patches and permutations at different

SNR and anatomical noise levels. At each SNR and anatomical noise level, the curves show the mean performance averaged over 2000 (100 permutations × 4

anatomical noise level × 5 patches) and 3000 (100 permutations × 6 SNR levels × 5 patches) extracted patches, respectively. The SSICA outperforms the regular

approach, especially in cases where the power of the specific component is low or where the between subject variability in location of a component is high. Shaded

area indicates ± standard error of the mean (sem).

SSICA with Various Numbers of Extracted Specific

Components
We investigated the cases in which the number of specific
components is set to less or more than its actual value.
First, we evaluated whether the SSICA extracts one or a
combination of specific components when M1 < Kg1 and
M2 < Kg2, and if this selection is influenced by the
relative strengths of the components. To do so, we generated
1920 (20 × 4 × 6 × 4) hybrid fMRI datasets by various
combinations of 2 specific patches embedded per group (20
random permutations), at different anatomical noise levels
(n = 0, 1, 2, 3 voxels), with different SNR values (0.5–1
in 0.1 steps), and using various unbalance ratios (1.5–3 in
steps of 0.5) as described in Section Robustness of SSICA to
the Number of Extracted Specific Components. Whereas, two
specific patches were simulated, up to one specific component
per group was allowed to be extracted with SSICA. Figure 5
shows the similarity ratio probability histogram (Equation 6)
calculated based on the results of SSICA at different unbalance
ratios.

In order to make the interpretations easier, the similarity
ratio was binned at three levels: low (0–0.2; corresponds to
a case where the weaker simulated patch is extracted as
the specific component), middle (0.2–0.8; where a mix of
both patches is extracted as the specific component), and
high (0.8–1; where the stronger patch is extracted as the
specific component). The extraction of specific components
is largely biased toward the stronger patch as represented by
the values of similarity ratio close to one vs. zero (∼60% as
opposed to ∼10% of the times). Also, ∼30% of the times a
combination of both specific components were extracted as
a single specific component as represented by the values of
similarity ratio between 0.2 and 0.8. As shown in Figure 5,
by increasing the unbalance ratio the probability of extracting
a weaker patch as specific component decreased, while the
probability of extracting the stronger patch increased. This
test indicates the preference of the SSICA algorithm to extract
specific components based on their power, as opposed to a
random initialization process. Although, one should note the
possibility of merging two distinct specific components in
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FIGURE 4 | ROC curves representing the classification performance of shared and specific patches and three resting-state networks at different SNR

values. For the SSICA, the ROC curve at each SNR level is generated using classification of 3200 extracted components (5 permutations × 4 anatomical noise level

× 20 threshold values × 8 patches). For the regular approach, as there is no internal threshold, the ROC curve at each SNR level is generated using classification of

3200 extracted components (100 permutations × 4 anatomical noise level × 8 patches). RG01 and RG001 stand for the regular gICA approach with α = 0.01 and α

= 0.001, respectively.

a single specific component (due to inadequate number of
allowed specific components) that may happen 30% of the
times, regardless of the relative power of the two specific
components.

Figure 6 reports the performance of SSICA when more
specific components than embedded specific patches are
extracted (M1 > Kg1 and M2 > Kg2 ). The splitting factor
probability histograms are shown at different within-component
variability levels (Equation 7). 1920 (20 × 4 × 6 ×4) hybrid
fMRI datasets were generated by various combinations of one
specific patch embedded per group and 3 shared patches (20
random permutations), at different anatomical noise levels (n =

0, 1, 2, 3 voxels), with different SNR values (0.5–1 in 0.1 steps),
and using various within-component variability levels (k= 0–1.5
in 0.5 steps). Whereas, only one specific component per group
was simulated in each configuration, two specific components per
group were allowed to be extracted in the SSICA. Again, in order
to make the interpretations easier, the splitting factor was binned
at three levels: low (0–0.2; noise condition where the strong, but
not the weak, extracted specific component is correlated with the

simulated specific patch), middle (0.2–0.8; repetition condition
where some blobs of the simulated specific patch is repeated
in both the weak and strong extracted specific components),
and high (0.8–1; split condition where the simulated specific
patch is split into the two extracted specific components). As
shown in Figure 6, at no or low within-component variability
levels (k < 1), SSICA extracts all the blobs of the specific
patch as one specific component, while the second component
represents only extraction noise (cf. splitting factor around zero).
At intermediate within-component variability levels (k = 1),
SSICA still extracts one specific component which includes the
whole patch’s blobs, while the second component duplicates
some of the blobs (cf. splitting factor around 0.5). At high
within-component variability levels (k > 1), SSICA splits the
specific patch into the two extracted specific components for
each group (cf. splitting factor around one). This simulation
demonstrates that depending on the degree of within component
variability, SSICA extracts the specific patch exclusively,
repeats it in several components, or split it across different
components.
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FIGURE 5 | Similarity ratio probability histograms at different

unbalance ratio levels. This figure shows the performance of SSICA when

fewer specific components than the actual simulated components are

extracted (M1 < Kg1 and M2 < Kg2). Similarity ratio is binned at three levels:

low (0–0.2), middle (0.2–0.8), and high (0.8–1). Histograms are generated

based a total of 480 extracted specific components (20 permutations × 4

anatomical noise levels × 6 SNR values) at each unbalance ratio level.

SSICA Performance in Partially-Specific Conditions
As described in Section Robustness of SSICA with Regards
to the Orthogonally Assumptions, partially-specific components
were generated to simulate cases where a brain network is
not totally missing within the opposite group (i.e., having
rather a small but non-zero power), while it is significantly
activated in the matching group. A total of 1000 (50 × 4 × 5)
hybrid fMRI datasets were generated by various combinations of
patches as shared and partially-specific components (50 random
permutations of up to 2 partially-specific patches per group),
at different anatomical noise levels (n = 0, 1, 2, 3 voxels), and
using different power ratios which specify the relative SNR of
the partially-specific components between groups (0.1–0.9 in
0.2 steps). We calculated the reconstruction performance of
the partially-specific components at different power ratios by
calculating r2 between the corresponding patch and the most
similar extracted component either among all the components,
or just among the specific ones. Figure 7 left panel shows
these results based on the entire extracted components in blue
and based on the specific components in red. As expected,
SSICA is able to extract the partially-specific components with
high accuracy either as shared or specific component (r2 ≈

0.9 left panel, blue curve). However, only at power ratios
≤0.5, the corresponding extracted component was among the
specific components. At power ratios more than 0.5, SSICA
labeled the corresponding partially-specific component most
often as a shared component. To better quantify the classification
performance, the percentage of times in which the SSICA
classified the partially-specific patches as specific was calculated
(i.e., the number of cases in which the best correlated component
with the patch was among the extracted specific components).

Figure 7 right panel shows classification performance of the
partially-specific components averaged over all hybrid simulated
datasets at different relative SNR values. The classification
performance curve closely mimics that of the reconstruction
performance among the specific components. Overall, this
simulation demonstrates that SSICA has the flexibility to extract
and label partially specific components as specific when the
component’s SNR is at least twice larger in one group than in
the other. In situations where a component’s power is more or
less comparable across groups (power ratio between 0.5 and 1), it
may be more natural to label this component as shared and then
to evaluate differences in the power of shared components across
groups.

Analysis of Finger-Tapping Dataset
Figure 8A shows the results of standard GLM analysis as
described in Section Analysis of Finger-Tapping fMRI Dataset
on the fMRI data acquired during finger-tapping conditions
cued with visual and auditory stimuli. As expected, the between-
condition contrasts of (VFT − RS) − (AFT − RS) and (AFT −

RS) − (VFT − RS) included mostly clusters of activity in the
visual and auditory areas of the brain, respectively. The auditory
network was found unilateral within the right hemisphere. The
contrast representing the average activity during both conditions
compared to the baseline, i.e., (AFT − RS) + (VFT − RS),
included clusters in the motor network comprising M1, SI,
premotor cortex, and supplementary motor area.

Time concatenation gICA followed by back-reconstruction as
implemented in GIFT software was applied to the AFT and VFT
data, as described in Section Analysis of Finger-Tapping fMRI
Dataset. Two sample t-statistics were applied on the results of
back-reconstruction to obtain the map of differences between
the two conditions for each extracted component. Among all the
components those showing a significant difference map (either
positive or negative) were selected. Figure 8B, left and middle
panels show those with the highest spatial correlation with the
visual and auditory networks templates, respectively. Beside some
sparse activated voxels which were spread all over the brain,
no component comprised of any significant cluster in either
visual or auditory areas were detected, even when two-sample
t-maps where thresholded with a more liberal threshold of t >

2.5. Therefore, although some parts of the auditory and visual
networks were found as shared between groups, no network
showing a significant contrast in AFT task vs. VFT (and vice
versa) was found using the GIFT method. Figure 8B, right panel
shows the results of one-sample t-statistics on a motor network.
As shown, the standard gICA approach as implemented in GIFT
software was able to extract shared networks between the two
conditions (there might be some overestimation of the extent of
the motor network using the GIFT method, compared with the
motor network resulted from the GLM analysis).

Figure 8C shows the results of applying SSICA to the AFT and
VFT conditions followed by the extended back-reconstruction
method to obtain t-statistics maps corresponding to shared
and specific components as described in Methods. Although
up to 3 specific components per condition were allowed,
the SSICA only resulted in one specific component for each
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FIGURE 6 | Splitting factor probability histograms at different within-component variability levels. This figure shows the performance of SSICA when more

specific components than the actual simulated components are extracted (M1 > Kg1 and M2 > Kg2). Splitting factor is binned at three levels: low (0–0.2) (noise

condition), middle (0.2–0.8; repetition condition), and high (0.8–1; split condition). Histograms are generated based a total of 480 pairs of specific components (20

permutations × 4 anatomical noise levels × 6 SNR values) at each within-component variability level.

FIGURE 7 | Performance of SSICA in partially specific conditions. Left panel shows the reconstruction performance of partially-specific patches as measured

by r2 averaged over 600 extracted components (50 permutations × 4 anatomical noise levels × 3 partially-specific patches on average) at each power ratios. Power

ratio is defined as the ratio of the simulated patch’s SNR value in the opposite group to the matching group. Error bars indicate standard deviation. Blue and red

curves show the average r2 when the matching component could be selected from all extracted components, and from just the specific components, respectively.

Right panel shows the classification performance of the partially specific patches as the percentage of times in which the SSICA classified the partially- specific

patches as a specific component, calculated at different power ratio levels.
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FIGURE 8 | Results of GLM, GIFT, and SSICA in extracting active clusters during finger-tapping task. (A) Z-score maps showing active clusters for different

contrasts during finger-tapping tasks using GLM analysis. Only the slices with significant activity are shown. The left (Visual), middle (Auditory), and right (Motor) panels

show the significantly active clusters for (VFT − RS) − (AFT − RS), (AFT − RS) − (VFT − RS), and (AFT − RS) + (VFT − RS) contrasts, respectively (corrected using

Gaussian random field theory, cluster level p < 0.05). (B) Left, middle, and right panels show the results of GIFT software for the contrasts of (VFT − AFT) on visual,

(AFT − VFT) on auditory, and (AFT + VFT) on motor network, respectively. (C) Left, middle and right panels show t-statistics applied on back-reconstructed SSICA

maps corresponding to specific components of VFT, AFT, and a shared component comprised of motor network, respectively. The statistical maps reported in (A) are

generated based on fMRI data in AFT, VFT, and RS conditions, while the statistical maps in (B) and (C) are calculated based on the data in AFT and VFT conditions

only. All ICA maps are back-reconstructed and resulting group level t-maps were thresholded at t = 3.17, p < 0.005, uncorrected.

FIGURE 9 | The two reliable specific networks in finger tapping dataset detected by performing clustering analysis on the results of SSICA. (A) The

most reliable network specific to the finger tapping with visual cue condition comprising bilateral occipital pole and occipital fusiform gyri. (B) The most reliable network

specific to the finger tapping with auditory cue condition comprising bilateral superior temporal gyrus, bilateral Heschl’s gyrus, and bilateral middle and inferior temporal

gyri (more on the right side). Note that this result is showing the average of spatial maps within each reliable cluster. Z-values range between 2.3 and 5 in both cases.

condition. Figure 8C, left panel shows the specific component
corresponding to VFT, which mainly includes primary and
secondary visual areas. The middle panel shows the specific

component corresponding to AFT, comprised of left superior
and middle temporal areas including the Heschl gyrus. The right
panel in Figure 8C shows one of the shared networks including
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bilateral motor and premotor areas. The SSICA results are
consistent with the two cueing conditions of the finger-tapping
task and with the results of GLM based analysis (Figure 8A). A
similar overall analysis was also performed when selecting 40 (or
50) components at the group-level, and generally a very similar
pattern of results was obtained using SSICA and GIFT (results
not shown).

Analysis of Consistency and Specificity of
Specific Networks in Task fMRI
After running SSICA 75 times (varying notably the maximum
number of specific network in each condition from 0 to 3), there
were 120 specific components for the finger-tapping with visual-
cue and 95 for the finger-tapping with auditory-cue condition.
Following the clustering algorithm described in Section Analysis
of the Consistency of the Extracted Specific Components in
Task fMRI, one significant cluster of components was detected
specific to the finger-tapping with visual-cue and one specific to
the finger-tapping with auditory-cue condition. These clusters,
respectively, included 119 and 94 specific components [as setting
the false positive rate (FPR) and the false discovery rate (FDR)
thresholds of the clustering analysis at 10%, as recommended
by Hyvarinen and Ramkumar (2013) in the context of real
fMRI, resulted in one component in each condition not being
included into any significant cluster]. The two reliable specific
networks, corresponding to the two significant clusters, are
illustrated in Figures 9A,B. As explained in Section Analysis of
the Specificity of the Extracted Specific Networks in Task fMRI,
all the components within each cluster were averaged to obtain
the representation of that cluster (the reliable specific network).

Our result in Figure 9A demonstrates that the most reliable
visual network comprises bilateral occipital pole and occipital
fusiform gyri. Results in Figure 9B demonstrate that the most
reliable auditory network comprises bilateral superior temporal
gyrus, bilateral Heschl’s gyrus, and bilateral middle and inferior
temporal gyri (more on the right side). For the cases where 40 or
50 components were extracted at the group level, we found very
similar results as when 30 components were extracted.

Results of power spectrum analysis on the temporal dynamics
of the detected specific networks (visual and auditory) show
that the extracted visual network shows increased functional
connectivity, estimated by the power of its corresponding time-
course in the [0–0.25 Hz] frequency band, in the finger-tapping
with visual-cue condition compared to the finger-tapping with
auditory-cue one (Figure 10A), whereas the auditory network
shows increased functional connectivity in finger-tapping with
auditory-cue condition compared to the finger-tapping with
visual-cue one (Figure 10B).

DISCUSSION

We proposed SSICA (Vahdat et al., 2012; Maneshi et al., 2014)
as a new promising method to handle group and/or condition
comparison in resting-state functional connectivity studies, built
upon the framework of constrained ICA. In the present study,
we further evaluated the performance of SSICA using hybrid

FIGURE 10 | Results of power spectrum analysis on the temporal

dynamics of each detected specific network reported in Figure 9. The

reliable visual network shows increase in the strength of functional connectivity

in the finger tapping with visual cue condition compared to the finger tapping

with auditory cue condition (A), whereas the reliable auditory network shows

the opposite (B). We chose to illustrate the visual networks in red and the

auditory network in blue. X-axis shows the frequency in Hertz and Y-axis

indicates the power in decibel. Shaded area shows standard error of the mean

(over all subjects).

and real fMRI datasets, and we also modified the initialization
of this iterative algorithm to deal with the high-dimensional data
of fMRI. We also extended the back-reconstruction method in
order to estimate the contribution of every single subject to a
component, thus allowing us to generate group-level t-statistics
maps based on each component extracted using SSICA. We
showed that SSICA outperformed the regular gICA approach in
extraction accuracy and classification of components. We also
demonstrated that SSICA was robust with respect to the number
of allowable extracted specific components. When fewer than the
actual number of specific components was allowed for extraction,
SSICA most often extracted as specific the components with
greater power difference across groups. When more specific
components than the actual number of specific components were
specified, the groups-differences map was either repeated or split
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over different specific components, depending on the degree of
coherence across isolated blobs of the groups-differences map.

Another important property of SSICA is its ability to
distinguish structural changes in networks spatial maps
(extracted as specific component) vs. changes in the power of
spatially identical networks (extracted as shared component). In
Vahdat et al. (2012), it was shown that the sensitivity of SSICA
was greater compared to regular gICA to detect changes in
the power of shared networks across groups as it dissociates
structural and temporal differences of the two networks using
different cost functions. Here, we systematically showed that in
the case of partially-specific network (a network present in both
groups but significantly weaker in one) which is a likely scenario
in fMRI network analysis, SSICA extracted it as specific if the
network’s SNR in the weaker group did not exceed half of the
background BOLD signal SNR during resting-state conditions;
Otherwise this network was extracted and classified as shared.
In fact, in this condition, SSICA uses the information from all
individuals to better estimate components with significant power
in both groups.

SSICA is an exploratory method which, independently of
the involved structures, extracts, and classifies components in
those common between groups (conditions) and those specific
to one group (condition). However, SSICA requires as input the
number of networks specific to each group (condition) but the
true value of this number is not known a priori. In this context,
we proposed in Maneshi et al. (2014), a methodology consisting
of launching SSICA multiple times with different numbers of
specific components followed by a clustering analysis, to provide
us with complementary statistical information regarding the
reliability and specificity of the extracted shared and specific
networks.

The lack of sensitivity of the regular gICA in detecting the
pattern of differences between conditions may be attributed to
the fact that in our fMRI task design we did not impose any
block timing constraint, to mimic, as much as possible, the
resting-state conditions. The validation of group ICA methods
is usually done using block-design task-based paradigms, in
which BOLD signal variability is mainly due to the context-
dependent increased activity within all activated brain areas,
rather than intrinsic changes in functional connectivity between
areas. Psychophysiological interaction analysis (Friston et al.,
1997) is one way to study changes in functional connectivity
between different experimental contexts above the main effect
of the task. Here, we intentionally separated periods of task
and rest to investigate changes in functional connectivity that
cannot be explained by timing-related fluctuations. To minimize
the effects of habituation, and hence, degradation in task-related
BOLD response (Condon et al., 1997), we conducted two runs
for each of AFT and VFT conditions. Note that, we could still
extract the functionally-related networks using standard GLM
analysis in this task design. Therefore, both GIFT and SSICA used
information in the temporally unconstrained BOLD signal to
detect changes associated to these shared and specific networks.

Several methods have been proposed to perform group ICA in
the context of fMRI (Lukic et al., 2002; Guo and Pagnoni, 2008;
Calhoun et al., 2009). Some provide a systematic way to obtain

single-group statistical maps from individual ICs by combining
ICA and clustering methods or canonical correlation analysis
(Esposito et al., 2005; Varoquaux et al., 2010; Boly et al., 2012;
Hyvarinen and Ramkumar, 2013). However, their extension to
perform between-group comparisons remains to be explored. In
another gICAmethod (Lukic et al., 2002), multi-group fMRI data
were decomposed into shared and specific components similar to
the one used in SSICA; however, the iterative algorithm proposed
by Lukic et al. (2002) extracts ICs in separate ICAmodels for each
group and then averages them across groups. Also, in contrast
to SSICA that preferentially optimizes the mixing matrix for the
extraction of specific components, this algorithm is based on
selecting eigenvectors that fulfill a given constraint, which can
potentially be obscured by noise. Also, with respect to the unified
ICA framework proposed by Guo and Pagnoni (2008), the group
data structure of SSICA can be attributed to a class of methods
with the most general group ICA model, with no restrictions on
the relationship between the subjects’ mixing matrices.

Others require extraction of some features from the BOLD
signal or sharing a similar time course across subjects as in
task-based designs, and hence there is no direct way to apply
them in resting-state paradigms (Beckmann and Smith, 2005;
Sui et al., 2009a). Compared to these methods of group ICA,
SSICA provides a systematic way to simultaneously combine the
processes of maximizing independence between the extracted
components and performing group comparison in a single
step (Vahdat et al., 2012). Also, contrary to feature-extracting
methods, SSICA can be directly applied to the resting-state
datasets to extract group-specific fMRI networks.

We have previously tested and validated the application of
SSICA in real resting-state fMRI data (Maneshi et al., 2014),
in which we studied group-specific differences in resting-state
networks between patients with unilateral mesial temporal lobe
epilepsy (MTLE) and healthy control subjects. We showed that
SSICA findings complement results from seed-based analysis
and provide more information about the underlying processes
resulting in changes of functional connectivity. However, as
these two methods measure different aspects of brain activity
organization, they may sometimes give apparently inconsistent
results. The current study as well as the previous one well
demonstrates that SSICA has an advantage over the seed-
based method in that an a priori hypothesis is not required
and therefore differences between groups can be assessed
independently of the involved structures. However, in real
case scenarios of fMRI analysis, SSICA needs to be combined
with complementary methods such as clustering to find the
most reliable or the most stable specific networks among all
the extracted ones. Moreover, our current study along with
Maneshi et al. (2014) confirm that “reliable” specific networks of
each group (or condition) may represent networks with higher
functional connectivity (defined by power analysis) in that group
(or condition) compared to the other group.

SSICA does not provide t-statistics maps for extracted
components per-se, and it needs to be combined with other
methods for assessing consistency of extracted networks across
subjects. Several methods such as the back-reconstruction
(Calhoun et al., 2001), dual regression (Filippini et al.,
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2009), and clustering-based approach (Esposito et al., 2005;
Hyvarinen and Ramkumar, 2013) have been proposed for
generating statistical maps based on the results of group ICA.
As explained before, as we were trying to compare SSICA
with GIFT method in this study, we chose to adapt and
modify the back-reconstruction approach originally proposed for
GIFT.

We compared our results with the standard gICA method
followed by the back-reconstruction as implemented in GIFT,
because we could select the same ICA approach (FastICA) with
similar parameters as the one used in SSICA. This provided
a fair comparison between the two approaches. In this paper
we extended the back-reconstruction method to be combined
with the SSICA results. It would be interesting to combine
the SSICA results with the dual regression approach; however
that was beyond the scope of the current study. In theory,
SSICA can be combined with any method of multi-subject
group ICA, which provides a measure of consistency across
subjects. As the projection of SSICA’s specific components
on the subspace spanned by the opposite group’s data is
insignificant (due to the SSICA cost function), performing
either one-sample t-statistics on the matching group or two-
sample t-statics between groups results in very similar t-statistics
maps.

One limitation of SSICA and, in general, concatenation group
ICA approaches, is that they require an accurate transformation
from subject’s functional space to the standard space. Methods
such as local linear discriminant analysis (McKeown et al., 2007)
and canonical ICA (Varoquaux et al., 2010) are specifically useful
to compensate for inter-subject differences when grouping the
dataset. Also, it is noteworthy that recent work using SimTB
software (Erhardt et al., 2012) has shown that time-concatenation
based methods are more robust than thought before with
respect to the motion artifacts and variability in the location of
components across subjects. Recent work (Himberg et al., 2004;
Hyvarinen and Ramkumar, 2013) using clustering approaches
to examine the reproducibility of the extracted networks
seems a promising method to apply to the results of SSICA’s
specific networks extracted from multiple runs, with different
parameters such as the number of allowable specific components,
total number of extracted components, and using different
initializations.

CONCLUSION

We demonstrated that SSICA is more sensitive than the
standard gICA approach to detect patterns of differences in
functional connectivity across groups/conditions, particularly in
model-free designs such as resting-state fMRI. Furthermore,
we showed that SSICA is robust when the number of specific
components is mis-specified a priori, and when the orthogonality
assumptions between groups are not completely met. We also
explained that although our method of functional connectivity
analysis, SSICA, and the conventional GLM analysis measure
different aspects of brain activity organization, they may
complement each other and provide more information about

the underlying processes resulting in changes of functional
connectivity. More importantly, by combining SSICA with
clustering analysis, not only could we validate results obtained
from GLM analysis, but we could also detect those changes
in functional connectivity across groups which are more
reproducible and reliable and should be considered for further
inspection.
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Supplementary Figure 1 | Common resting-state networks extracted by

SSICA and gICA. In the hybrid fMRI data set, using SSICA and the regular gICA

approach, four highly-reproducible resting-state networks (default mode, visual,

motor, and auditory) were extracted as shared components. As shown, both

methods produced highly comparable connectivity maps related to common

resting-state networks. Color-coded maps represent one-sample t-statistics.
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