130 research outputs found

    Ice fog observed at cirrus temperatures at Dome C, Antarctic Plateau

    Get PDF
    As the near-surface atmosphere over the Antarctic Plateau is cold and pristine, its physico-chemical conditions resemble to a certain extent those of the high troposphere where cirrus clouds form. In this paper, we carry out an observational analysis of two shallow fog clouds forming in situ at cirrus temperatures – that is, temperatures lower than 235 K – at Dome C, inner Antarctic Plateau. The combination of lidar profiles with temperature and humidity measurements from advanced thermo-hygrometers along a 45 m mast makes it possible to characterise the formation and development of the fog. High supersaturations with respect to ice are observed before the initiation of fog, and the values attained suggest that the nucleation process at play is the homogeneous freezing of solution aerosol droplets. This is the first time that in situ observations show that this nucleation pathway can be at the origin of an ice fog. Once nucleation occurs, the relative humidity gradually decreases down to subsaturated values with respect to ice in a few hours, owing to vapour deposition onto ice crystals and turbulent mixing. The development of fog is tightly coupled with the dynamics of the boundary layer which, in the first study case, experiences a weak diurnal cycle, while in the second case, it transits from a very stable to a weakly stable dynamical regime. Overall, this paper highlights the potential of the site of Dome C for carrying out observational studies of very cold cloud microphysical processes in natural conditions and using in situ ground-based instruments.</p

    Characterization of the boundary layer at Dome C (East Antarctica) during the OPALE summer campaign

    Get PDF
    The regional climate model MAR was run for the region of Dome C located on the East Antarctic plateau, during Antarctic summer 2011–2012, in order to refine our understanding of meteorological conditions during the OPALE observation campaign. A very high vertical resolution is set up in the lower troposphere, with a grid spacing of roughly 2 m. Comparisons are made with observed temperatures and winds near the surface and from a 45 m high tower as well as sodar and radiation data. MAR is generally in very good agreement with the observations but sometimes underestimates cloud formation, leading to an underestimation of the simulated downward long-wave radiation. Absorbed short-wave radiation may also be slightly overestimated due to an underestimation of the snow albedo and this influences the surface energy budget and atmospheric turbulence. Nevertheless the model provides sufficiently reliable information that represent key parameters when discussing the representativeness of chemical measurements made nearby the ground surface during field campaigns conducted at the Concordia site located at Dome C (3233 m a.s.l.)

    Archival of the water stable isotope signal in East Antarctic ice cores

    Get PDF
    The oldest ice core records are obtained from the East Antarctic plateau. Water stable isotopes records are key for reconstructions of past climatic conditions both over the ice sheet and at the evaporation source. The accuracy of such climate reconstructions crucially depends on the knowledge of all the processes affecting the water vapour, precipitation and snow isotopic composition. Atmospheric fractionation processes are well understood and can be integrated in Rayleigh distillation and complex isotope enabled climate models. However, a comprehensive quantitative understanding of processes potentially altering the snow isotopic composition after the deposition is still missing, especially for exchanges between vapour and snow. In low accumulation sites such as found on the East Antarctic Plateau, these poorly constrained processes are especially likely to play a significant role. This limits the interpretation of isotopic composition from ice core records, specifically at short time scales. Here, we combine observations of isotopic composition in the vapour, the precipitation, the surface snow and the buried snow from various sites of the East Antarctic Plateau. At the seasonal scale, we highlight a significant impact of metamorphism on surface snow isotopic signal compared to the initial precipitation isotopic signal. In particular, in summer, exchanges of water molecules between vapour and snow are driven by the sublimation/condensation cycles at the diurnal scale. Using highly resolved isotopic composition profiles from pits in five East Antarctic sites, we identify a common 20 cm cycle which cannot be attributed to the seasonal variability of precipitation. Altogether, the smaller range of isotopic compositions observed in the buried and in the surface snow compared to the precipitation, and also the reduced slope between surface snow isotopic composition and temperature compared to precipitation, constitute evidences of post-deposition processes affecting the variability of the isotopic composition in the snow pack. To reproduce these processes in snow-models is crucial to understand the link between snow isotopic composition and climatic conditions and to improve the interpretation of isotopic composition as a paleoclimate proxy

    Snow Chemistry Across Antarctica

    Get PDF
    An updated compilation of published and new data of major-ion (Ca, Cl, K, Mg, Na, NO3, SO4) and methylsulfonate (MS) concentrations in snow from 520 Antarctic sites is provided by the national ITASE (International Trans-Antarctic Scientific Expedition) programmes of Australia, Brazil, China, Germany, Italy, Japan, Korea, New Zealand, Norway, the United Kingdom, the United States and the national Antarctic programme of Finland. The comparison shows that snow chemistry concentrations vary by up to four orders of magnitude across Antarctica and exhibit distinct geographical patterns. The Antarctic-wide comparison of glaciochemical records provides a unique opportunity to improve our understanding of the fundamental factors that ultimately control the chemistry of snow or ice samples. This paper aims to initiate data compilation and administration in order to provide a framework for facilitation of Antarctic-wide snow chemistry discussions across all ITASE nations and other contributing groups. The data are made available through the ITASE web page (http:// www2.umaine.edu/itase/content/syngroups/snowchem.html) and will be updated with new data as they are provided. In addition, recommendations for future research efforts are summarized

    Climat a long terme : interpretation des donnees du forage Antarctique de Vostok, developpement d'un modele dynamique de l'atmosphere en moyenne zonale

    No full text
    CNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEFRFranc

    Space–time Antarctic surface mass-balance variability from climate models

    No full text
    corecore