43 research outputs found

    Personalized medicine with biologics for severe type 2 asthma : current status and future prospects

    Get PDF
    Asthma affects more than 300 million people worldwide and poses a large socioeconomic burden, particularly in the 5% to 10% of severe asthmatics. So far, each entry of new biologics in clinical trials has led to high expectations for treating all severe asthma forms, but the outcome has only been successful if the biologic, as add-on treatment, targeted specific patient subgroups. Indeed, we now realize that asthma is a heterogeneous disease with multiple phenotypes, based on distinct pathophysiological mechanisms, called endotypes. Thus, asthma therapy is gradually moving to a personalized medicine approach, tailored to individual's asthma endotypes identified through biomarkers. Here, we review the clinical efficacy of antibody-related therapeutics undergoing clinical trials, or those already approved, for the treatment of severe type 2 asthma. Biologics targeting type 2 cytokines have shown consistent efficacy, especially in patients with evidence of type 2 inflammation, suggesting that the future of asthma biologics is promising

    A bispecific antibody strategy to target multiple type 2 cytokines in asthma

    Get PDF
    Background: Asthma is a chronic inflammatory airway disease in which innate and adaptive immune cells act together to cause eosinophilic inflammation, goblet cell metaplasia (GCM), and bronchial hyperreactivity (BHR). In clinical trials using biologicals against IL-4 receptor (IL-4R) alpha or IL-5, only a subset of patients with moderate-to-severe asthma responded favorably, suggesting that distinct pathophysiologic mechanisms are at play in subgroups of patients called endotypes. However, the effect of multiple cytokine blockade using bispecific antibodies has not been tested. Objective: We sought to target simultaneously the IL-4, IL-13, and IL-5 signaling pathways with a novel IL-4R alpha/IL-5-bispecific antibody in a murine house dust mite (HDM) model of asthma. Methods: Two mAbs neutralizing IL-4R alpha and IL-5 were generated by using a llama-based antibody platform. Their heavy and light chains were then cotransfected in mammalian cells, resulting in a heterogeneous antibody mixture from which the bispecific antibody was isolated by using a dual anti-idiotypic purification process. C57BL/6J mice were finally sensitized and challenged to HDM extracts and treated during challenge with the antibodies. Results: We successfully generated and characterized the monospecific and bispecific antibodies targeting IL-4R alpha and IL-5. The monospecific antibodies could suppress eosinophilia, IgE synthesis, or both, whereas only the IL-4R alpha/IL-5-bispecific antibody and the combination of monospecific antibodies additionally inhibited GCM and BHR. Conclusion: Type 2 cytokines act synergistically to cause GCM and BHR in HDM-exposed mice. These preclinical results show the feasibility of generating bispecific antibodies that target multiple cytokine signaling pathways as superior inhibitors of asthma features, including the difficult-to-treat GCM

    Dual anti-idiotypic purification of a novel, native-format biparatopic anti-MET antibody with improved in vitro and in vivo efficacy

    Get PDF
    Bispecific antibodies are of great interest due to their ability to simultaneously bind and engage different antigens or epitopes. Nevertheless, it remains a challenge to assemble, produce and/or purify them. Here we present an innovative dual anti-idiotypic purification process, which provides pure bispecific antibodies with native immunoglobulin format. Using this approach, a biparatopic IgG1 antibody targeting two distinct, HGF-competing, non-overlapping epitopes on the extracellular region of the MET receptor, was purified with camelid single-domain antibody fragments that bind specifically to the correct heavy chain/light chain pairings of each arm. The purity and functionality of the anti-MET biparatopic antibody was then confirmed by mass spectrometry and binding experiments, demonstrating its ability to simultaneously target the two epitopes recognized by the parental monoclonal antibodies. The improved MET-inhibitory activity of the biparatopic antibody compared to the parental monoclonal antibodies, was finally corroborated in cell-based assays and more importantly in a tumor xenograft mouse model. In conclusion, this approach is fast and specific, broadly applicable and results in the isolation of a pure, novel and native-format anti-MET biparatopic antibody that shows superior biological activity over the parental monospecific antibodies both in vitro and in vivo

    Development and characterization of agonistic antibodies targeting the Ig-like 1 domain of MuSK

    Get PDF
    Muscle-specific kinase (MuSK) is crucial for acetylcholine receptor (AChR) clustering and thereby neuromuscular junction (NMJ) function. NMJ dysfunction is a hallmark of several neuromuscular diseases, including MuSK myasthenia gravis. Aiming to restore NMJ function, we generated several agonist monoclonal antibodies targeting the MuSK Ig-like 1 domain. These activated MuSK and induced AChR clustering in cultured myotubes. The most potent agonists partially rescued myasthenic effects of MuSK myasthenia gravis patient IgG autoantibodies in vitro. In an IgG4 passive transfer MuSK myasthenia model in NOD/SCID mice, MuSK agonists caused accelerated weight loss and no rescue of myasthenic features. The MuSK Ig-like 1 domain agonists unexpectedly caused sudden death in a large proportion of male C57BL/6 mice (but not female or NOD/SCID mice), likely caused by a urologic syndrome. In conclusion, these agonists rescued pathogenic effects in myasthenia models in vitro, but not in vivo. The sudden death in male mice of one of the tested mouse strains revealed an unexpected and unexplained role for MuSK outside skeletal muscle, thereby hampering further (pre-) clinical development of these clones. Future research should investigate whether other Ig-like 1 domain MuSK antibodies, binding different epitopes, do hold a safe therapeutic promise

    Anti-C2 Antibody ARGX-117 Inhibits Complement in a Disease Model for Multifocal Motor Neuropathy

    Get PDF
    BACKGROUND AND OBJECTIVES: To determine the role of complement in the disease pathology of multifocal motor neuropathy (MMN), we investigated complement activation, and inhibition, on binding of MMN patient-derived immunoglobulin M (IgM) antibodies in an induced pluripotent stem cell (iPSC)-derived motor neuron (MN) model for MMN. METHODS: iPSC-derived MNs were characterized for the expression of complement receptors and membrane-bound regulators, for the binding of circulating IgM anti-GM1 from patients with MMN, and for subsequent fixation of C4 and C3 on incubation with fresh serum. The potency of ARGX-117, a novel inhibitory monoclonal antibody targeting C2, to inhibit fixation of complement was assessed. RESULTS: iPSC-derived MNs moderately express the complement regulatory proteins CD46 and CD55 and strongly expressed CD59. Furthermore, MNs express C3aR, C5aR, and complement receptor 1. IgM anti-GM1 antibodies in serum from patients with MMN bind to MNs and induce C3 and C4 fixation on incubation with fresh serum. ARGX-117 inhibits complement activation downstream of C4 induced by patient-derived anti-GM1 antibodies bound to MNs. DISCUSSION: Binding of IgM antibodies from patients with MMN to iPSC-derived MNs induces complement activation. By expressing complement regulatory proteins, particularly CD59, MNs are protected against complement-mediated lysis. Yet, because of expressing C3aR, the function of these cells may be affected by complement activation upstream of membrane attack complex formation. ARGX-117 inhibits complement activation upstream of C3 in this disease model for MMN and therefore represents an intervention strategy to prevent harmful effects of complement in MMN

    The ROS-NOX Connection in Cancer and Angiogenesis

    No full text

    Regulation of receptor protein-tyrosine phosphatase α by oxidative stress

    No full text
    The presence of two protein-tyrosine phosphatase (PTP) domains is a striking feature in most transmembrane receptor PTPs (RPTPs). The function of the generally inactive membrane-distal PTP domain (RPTP-D2) is unknown. Here we report that an intramolecular interaction between the spacer region (Sp) and the C-terminus in RPTPα prohibited intermolecular interactions. Interestingly, stress factors such as H(2)O(2), UV and heat shock induced reversible, free radical-dependent, intermolecular interactions between RPTPα and RPTPα-SpD2, suggesting an inducible switch in conformation and binding. The catalytic site cysteine of RPTPα-SpD2, Cys723, was required for the H(2)O(2) effect on RPTPα. H(2)O(2) induced a rapid, reversible, Cys723-dependent conformational change in vivo, as detected by fluorescence resonance energy transfer, with cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) flanking RPTPα-SpD2 in a single chimeric protein. Importantly, H(2)O(2) treatment stabilized RPTPα dimers, resulting in inactivation. We propose a model in which oxidative stress induces a conformational change in RPTPα-D2, leading to stabilization of RPTPα dimers, and thus to inhibition of RPTPα activity

    Therapeutic bispecific antibody formats : a patent applications review (1994-2017)

    No full text
    Introduction: Bispecific antibodies have become increasingly of interest by enabling new therapeutic applications such as retargeting cellular immunity towards tumor cells. About 23 bispecific antibody platforms have therefore been developed, generating about 62 molecules which are currently being evaluated for potential treatment of a variety of indications, such as cancer and inflammatory diseases, among which three molecules were approved. This class of drugs will represent a multi-million-dollar market over the coming years. Many companies have consequently invested in the development of bispecific antibody platforms, creating an important patent activity in this field. Areas covered: The present review gives an overview of the patent literature over the period 1994-2017 of different immunoglobulin gamma-based bispecific antibody platforms and the molecules approved or in clinical trials. Expert opinion: Bispecific antibodies are progressively accepted as potentially superior therapeutic molecules in a broad range of diseases. This frantic activity creates a maze of hundreds of patents that pose considerable legal risks for both newcomers and established companies. It can consecutively be anticipated that the number of patent conflicts will increase. Nevertheless, it can be expected that patents related to the use of a bispecific antibody will have tremendous commercial value
    corecore