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ABSTRACT
Asthma affects more than 300 million people worldwide and poses a large socioeconomic burden,
particularly in the 5% to 10% of severe asthmatics. So far, each entry of new biologics in clinical trials has
led to high expectations for treating all severe asthma forms, but the outcome has only been successful if
the biologic, as add-on treatment, targeted specific patient subgroups. Indeed, we now realize that
asthma is a heterogeneous disease with multiple phenotypes, based on distinct pathophysiological
mechanisms, called endotypes. Thus, asthma therapy is gradually moving to a personalized medicine
approach, tailored to individual’s asthma endotypes identified through biomarkers. Here, we review the
clinical efficacy of antibody-related therapeutics undergoing clinical trials, or those already approved, for
the treatment of severe type 2 asthma. Biologics targeting type 2 cytokines have shown consistent
efficacy, especially in patients with evidence of type 2 inflammation, suggesting that the future of asthma
biologics is promising.
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Introduction

Asthma is described in the 2016 Global Initiative for Asthma
report as “a heterogeneous disease, usually characterized by
chronic airway inflammation. It is defined by the history of
respiratory symptoms such as wheeze, shortness of breath,
chest tightness and cough that vary over time and in their
occurrence, frequency and intensity, together with variable
expiratory airflow limitation”.1 To better understand its hetero-
geneity, which is highlighted by the variety of clinical presenta-
tions, physiologic characteristics, pathogenic pathways and
outcomes, the concept of asthma phenotyping has emerged.

An asthma phenotype is defined by the International Euro-
pean Respiratory Society/American Thoracic Society guide-
lines, “as the composite, observable characteristics of an
organism, resulting from interaction between its genetic make-
up and environmental influences, which are relatively stable –
but not invariable – with time”.2 Asthma phenotypes were ini-
tially focused on combinations of clinical, physiologic and
hereditary characteristics, but they have evolved to link biology
to phenotype.3 Interestingly, these phenotypes are now evolv-
ing into asthma endotypes, wherein a specific biological path-
way is identified that explains the observable properties of a
phenotype, with the goal to improve therapy.3 Endotypes
would differ in terms of genetic susceptibility, environmental
risk factors, age of onset, airway inflammation, clinical presen-
tation, prognosis and response to standard and new therapies,

but definitive clustering of these characteristics or their relation
to pathobiology remains uncertain (Supplementary Figure 1).4

With almost 1 in 8 children and 1 in 12 adults affected,
asthma is one of the most common chronic diseases, resulting
in up to 300 million people affected worldwide.4 In many
patients, the disease can be controlled by a combination of non-
specific drugs, an inhaled corticosteroid (ICS) and a short- or
long-acting b2-adrenergic agonist (LABA). Nevertheless, in 5
to 10% of patients, the disease runs a severe course. In such
cases, the patient will require treatment with high-dose ICS
plus a second controller medication (such as LABAs or leuko-
triene receptor antagonists) or systemic steroids to prevent the
disease from becoming ‘uncontrolled’, or the disease may
remain ‘uncontrolled’ despite these treatments.2 This loss of
control manifests as frequent severe exacerbations that require
systemic steroids or hospitalization. However, responses to
these treatments can vary and do not modify the course of the
disease, requiring an urgent need for new and more effective
drugs to prevent the occurrence of potentially life-threatening
episodes.

Biologics (i.e., drugs produced by living cells through biolog-
ical processes, and mimic natural biological substances such as
antibody-related therapeutics5) targeting specific inflammatory
pathways have emerged as promising personalized medicines
in the treatment of severe asthma. Their use is explained by the
fact that the disease is characterized by inflammatory responses
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involving multiple pathways and triggers. Increased levels of
inflammatory molecules, cytokines in particular, have been
identified in clinical samples and their role in disease pathogen-
esis and pathophysiology have been demonstrated in preclinical
studies using asthma mouse models, leading to their extensive
investigation as potential targets.4 Consequently, there are cur-
rently a dozen biologics, mainly antibody-related therapeutics,
in clinical studies for patients with moderate-to-severe asthma.

The economic and healthcare benefits of treating asthma are
considerable. Most costs for asthma come from the severe asth-
matics that require frequent hospital admissions due to exacer-
bations, which are often caused by virus infection. More
specifically, the total cost of asthma has been estimated to be
approximatively €17.7 billion in Europe, of which €9.8 billion
is accounted for by the indirect costs of loss of productivity.6 In
the US, the annual costs amount to $18 billion.7 Although the
costs of biologics are expensive compared to current treatment
options, effective biologics for a well-defined endotype may be
cost effective in the long-term, by preventing hospital admis-
sions due to severe asthma exacerbations and by reducing sys-
temic side effects of ICS.8

In this review, we focus on the importance of a personalized
medicine using a biomarker-driven approach, the immunologi-
cal basis of type 2 and non-type 2 inflammations in asthma, the
development of biologics that interrupt specific pathways
involved in type 2 inflammation, the evidence of efficacy of
these personalized treatments in recent clinical trials, their limi-
tations, and the emergence of novel approaches.

Personalized medicine to treat severe asthma using
a biomarker-driven approach

The increased use of biologics in clinical trials has facilitated the
understanding of asthma heterogeneity and the subsequent
development of asthma endotypes (Supplementary Figure 1). It
underscored the importance of selecting the appropriate patient
subsets with the correct target, dosing and mode of delivery
during the clinical trials of these new biologics, by using the
adapted outcome measures to the biological pathway(s) being
targeted. From this comes the need for a personalized medicine
using a biomarker-driven approach for development of biolog-
ics in severe asthma treatments (Supplementary Table 1).

One important tool in the development of personalized
medicine is the application of biomarkers to stratify patients.9

A biomarker is defined as “a characteristic that is objectively
measured and evaluated as an indicator of normal biologic pro-
cesses, pathogenic processes or pharmacologic responses to a
therapeutic intervention”.10 Targeted therapy benefits mostly
from a biomarker that encompasses both high diagnostic, ther-
agnostic (i.e., the ability to predict treatment effect) and prog-
nostic capacities. Ideally, the biomarker might be the
pathophysiological therapeutic target itself (i.e., the ‘maker’ of
disease in a specific endotype).11 Importantly, biomarkers are
critical in the design and implementation of efficient and cost-
effective clinical trials.12

An early asthma biomarker was the induced sputum cell
count (eosinophils and neutrophils). Indeed, the presence of
high sputum eosinophil count was found to be predictive of
response to corticosteroid therapy.13 Since then, asthma

biomarkers have expanded to include mainly blood eosinophil
counts, total serum immunoglobulin E (IgE) levels, fraction of
exhaled nitric oxide (FENO) in the exhaled air and serum peri-
ostin (Table 1).14–17

The technique of induced sputum cell count (eosinophils and
neutrophils) has been pivotal in the emergence of the concept of
asthma endotyping. Although it is technically demanding and
time-consuming, several centers have applied this technique to
characterize airway inflammation.18 Based on sputum cell count
analysis, in addition to clinical phenotyping (including allergen
skin-prick tests and/or allergen-specific serum IgE) and type 2
biomarkers (Table 1), two groups of airway inflammations in
asthma have been described: type 2 (allergic eosinophilic and
nonallergic eosinophilic asthma) and non-type 2 (neutrophilic,
paucigranulocytic and mixed granulocytic asthma).

Type 2 and non-type 2 airway inflammations
in asthma

Type 2: allergic and non-allergic eosinophilic asthma

Most children and roughly 50% of adults have allergic eosino-
philic asthma, in which the disease coincides with allergic sen-
sitization (atopy) defined by the presence of serum IgE
antibodies and/or a positive skin-prick test to the (lipo)pro-
teins of common inhaled allergens such as Derp 1 from the
house dust mite Dermatophagoides pteronissinus.4,19 In con-
trast, nonallergic eosinophilic asthma often develops later in
life (i.e., late onset asthma) and, per its definition, has neither
IgE reactivity to allergens in the serum nor any obvious
involvement of the adaptive immune system such as T-helper
type 2 cells (TH2) cells.

4 This form of the disease is often associ-
ated with chronic rhinosinusitis and nasal polyps, and is diffi-
cult to treat, often requiring long-term treatment with
systemic steroids (Table 2).4

TH2 cells and type 2 innate lymphoid cells (ILC2) are master
drivers of type 2 immunity by expressing the transcription factor
GATA3, which controls type 2 cytokine production (Figure 1).4

Interleukin (IL)-4 and IL-13 are central cytokines to the type 2
inflammation induced by TH2 cells and ILC2s, but also by other
type 2 inflammatory cells such as eosinophils, alternatively acti-
vated macrophages, basophils and mast cells.20 In chronic severe
asthmatics, basophils are also a prominent source of IL-13 and IL-
5, and might sustain the disease process in an IL-33-dependent
manner (Figure 1).21 IL-4 receptor alpha (IL-4Ra) is the common
receptor subchain for IL-4 and IL-13, which can be dimerized
with gc (expressed on cells restricted to hematopoietic cell line-
ages) or with IL-13Ra1 (expressed fairly ubiquitously, e.g., airway
epithelial cells). IL-4 activates both type of receptors, whereas IL-
13 only activates the receptor dimerized with IL-13Ra1. Thus,
whilst both interleukins can promote IgE isotype switching in B
cells, only IL-4 activates TH2 effector cells (Figure 1).

22–24

IL-13 signalling leads to the differentiation of bronchial epithe-
lial cells into mucus-producing goblet cells andmay potentiate air-
way smooth muscle cell contraction (Figure 1).20 IL-4 is required
for TH2 priming and maturation, whereas TH2 differentiation,
promoted by the dendritic cells, is enhanced by cytokines made by
epithelial cells, such as thymic stromal lymphoietin (TSLP), IL-33,
IL-25 and granulocyte-macrophage colony-stimulating factor

2 M. GODAR ET AL.
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(GM-CSF).25 Those cytokines also exert an important tissue
checkpoint for full activation of primed TH2 cells and ILC2s that
enter target organs such as the lungs (Figure 1).26 It is also now
clear that TH2 memory cells can secrete cytokines even in the
absence of T-cell receptor ligation in nonallergic eosinophilic
asthma, and could react to non-specific stimuli imposed on the
airway epithelium (Figure 1).26,27

IgE and IL-5 are two other important proteins in type 2
asthma. IgE, produced by B cells, binds to the type I high affinity
IgE receptor (FceRI), which activates mast cells and basophils
associated with IgE-mediated hypersensitivity when cross-linked
by allergen (Figure 1).4 IL-5 is produced, like IL-13, by multiple
cell types implicated in severe asthma, including TH2 cells, ILC2s,
eosinophils and basophils. IL-5 binds to IL-5 receptor complex
principally expressed on eosinophils, and is involved in the differ-
entiation and maturation of eosinophils in the bone marrow and
in their survival and migration to tissues (Figure 1).4

Non-type 2: noneosinophilic asthma

Although asthma is classically associated with eosinophilia and
type 2 cytokines, some asthmatic patients show a neutrophil-
predominant disease with an absence of TH2 cytokines and their

downstream signatures.28–30 These non-type 2 asthma patients
have generally adult-onset disease, and are less likely to be
atopic (Table 2).31–34 The underlying causes and triggers are not
well understood, but are heterogeneous and might encompass
obesity, respiratory infections, smoking and air pollution. Some
patients with non-type 2 asthma seem to have neutrophilic
inflammation with less severe reversible airway obstruction and
a TH17 cytokine milieu (Figure 1).35–37 The cytokine production
by TH17 cells and other IL-17-producing cells is resistant to
inhibition by corticosteroids, which explains why neutrophil-
rich inflammation driven by IL-17 is the pathological correlate
of a subgroup of patients with steroid-resistant asthma
(Table 2).4 Additionally, other patients have mixed granulocytic
asthma when both eosinophils and neutrophils are increased or
paucigranulocytic asthma when both these inflammatory cells
are below the thresholds (Table 2 and Figure 1).18,38 These non-
type 2 asthma groups remain poorly defined, clinically heteroge-
neous and without specific biomarkers, making molecular endo-
typing and targeted therapy approaches difficult.

Importantly, the identification of the type 2 and non-type 2
airway inflammations has fostered the concept of targeted bio-
logics and patient’s stratification, introducing personalized
medicine in severe asthma treatment.

Figure 1. Simplified schematic representation of four different types of airway inflammation in asthmatic patients. (A) Type 2 consists of allergic and nonallergic eosino-
philic asthma. (a) In allergic eosinophilic asthma, T-helper type 2 (TH2) cell lymphocytes and mast cells drive eosinophilic airway inflammation in an allergen-specific,
immunoglobulin E (IgE)-dependent manner. (b) In nonallergic eosinophilic asthma, innate lymphocytes such as natural killer T cells (NKT cells) and innate lymphoid cells
type 2 (ILC2) cells might contribute to airway eosinophilia via the production of interleukin (IL)-5, in response to pollutants or infectious agents. (B) Non-type 2 consists of
neutrophilic and paucigranulocytic asthma. (c) The mechanisms underlying neutrophilic asthma need to be elucidated, but the IL-17 pathway and CXCL8 have been asso-
ciated with the airway neutrophilia. More precisely, IL-17A and IL-17F play important roles in host responses to extracellular pathogens via the upregulation of antimicro-
bial proteins and induction of cytokines and chemokines involved in neutrophil expansion (e.g., GM-CSF) and recruitment (e.g., CXCR ligands). (d) Paucigranulocytic
asthma has been poorly studied. It is thought to be not inflammatory and is characterized by the absence of increased numbers of inflammatory cells, suggesting the
involvement of non-inflammatory mechanisms mediated by airway remodeling responses that lead to extensive airway narrowing. The biologics being evaluated in clini-
cal trials or already approved as add-on treatment, on top of high-doses inhaled corticosteroid (ICS) and a short- or long-acting b2-adrenergic agonist (LABA), for (C) aller-
gic and (D) nonallergic eosinophilic asthma are depicted in light grey. CRTH2: prostaglandin D2 receptor 2; CXCL8: C-X-C motif chemokine ligand 8; CXCR: C-X-C
chemokine receptor; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; FceRI: Fc epsilon receptor I; GM-CSF: granulocyte-macrophage colony-stimu-
lating factor; ICS: inhaled corticosteroid; IgE: immunoglobulin epsilon; ILC2: innate lymphoid cell type 2; IL: interleukin; IL-4Ra: interleukin-4 receptor alpha; IL-5Ra: inter-
leukin-5 receptor alpha; IL-9R: interleukin-9 receptor; IL-25R: interleukin-25 receptor; IL-33R: interleukin-33 receptor; LABA: long-acting b2-adrenergic; MHC: major
histocompatibility complex; NKT: natural killer T; PGD2: prostaglandin D2; TCR: T-cell receptor; TH2: T-helper type 2 cell; TH17: T-helper type 17 cell; TSLP: thymic stromal
lymphoietin; TSLPR: thymic stromal lymphoietin receptor.
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Type 2 biologic approaches

Immunoglobulin E

Omalizumab is a monoclonal IgG1k antibody with a human
framework and complementarity-determining regions from a
humanized anti-IgE murine antibody (MAE11), produced with
hybridoma technology (Table 3 and Figure 1).39 Omalizumab
inhibits IgE effector functions by blocking IgE binding FceRI
on mast cells, but does not cause mast cell activation because it
cannot bind to IgE on cell surfaces where the FceRI receptor
already masks the anti-IgE epitope (Figure 1).40 With pro-
longed treatment, omalizumab also reduces the expression of
FceRI on mast cells and basophils.41 Omalizumab became the
first monoclonal antibody approved by the Food and Drug
Administration (FDA, 2003) and European Medicines Agency
(EMA, 2005) to treat asthma patients of 12 years and older
(Table 3).

Nevertheless, the use of omalizumab has been limited by its
expense (US wholesale prices for omalizumab average almost
$1300 per patient-month for an asthmatic patient who weighs
less than 90 kg42), the need for multiple injections that may
then lead to injection-site reactions, a black box warning on
anaphylaxis, and new warnings on cardiovascular risk.43 Thus,
an improved ability to predict responsive patients with high
certainty was important, requiring new clinical trials or pro-
spective observational cohort studies (e.g., registries). Although
omalizumab has not been prospectively studied in patients
identified based on other type 2 biomarkers, a retrospective
analysis of the Phase 3 study by Hanania et al. (EXTRA trial)44

divided patients into those with and without type 2 inflamma-
tion based on median splits of blood eosinophil counts, serum
periostin and FENO levels (Supplementary Table 2). Patients
with biomarker levels greater than the median had greater
reductions in asthma exacerbations with omalizumab therapy
compared with those with levels lower than the median (Sup-
plementary Table 2).45 Although no other outcomes were
affected, this approach should be prospectively validated.

Continuation of omalizumab after 5-year treatment resulted
in continued benefit, as evidenced by improved symptom con-
trol and reduced exacerbation risk in the XPORT trial (Supple-
mentary Table 2).46 Approximately half of the patients
remained free of exacerbations during the one-year study
period despite withdrawal of omalizumab. Although this study
suggested that omalizumab might have beneficial disease-modi-
fying effects, this positive outcome could also be due to the nat-
ural history of the disease (e.g., spontaneous evolution from
severe asthma towards mild-moderate asthma in a subgroup of
patients after about 5 years or improvement in asthma control
thanks to removal from persistent allergen exposure such as
domestic animals, e.g., cats and dogs).

In 2016, FDA and EMA approved an expanded age range
for omalizumab to include children six to 11 years of age with
moderate-to-severe persistent asthma, having a positive skin
test or in vitro reactivity to an airborne allergen and symptoms
that are inadequately controlled with ICS (Table 3 and Supple-
mentary Table 2). This approval followed successful pediatric
clinical trials such as one conducted by Lanier et al. 2009 (Sup-
plementary Table 2).47 Nevertheless, to date, strong biomarkers
to identify responders are still lacking. These issues, as well as

further cost-effectiveness analyses, are still open and need to be
investigated in future pediatric studies.

Interleukin-13

Lebrikizumab is a humanized IgG4k antibody that binds IL-13
with high affinity at an epitope that strongly overlaps with the
binding site of IL-4Ra and inhibits its activity (Table 3 and
Figure 1).48 In previous studies, lebrikizumab treatment was
associated with significantly and substantially decreased serum
periostin, FENO and serum IgE, and modestly increased periph-
eral blood eosinophil count.17,49 Notably, the extent of the phar-
macodynamic effect was greater in subjects who had high
periostin levels at baseline.17 Nevertheless, lebrikizumab did not
consistently show significant reduction in asthma exacerbations
in biomarker-high patients (periostin �50 ng/mL or blood eosi-
nophils �300 cells per mL) in more recent replicate Phase 3
studies (LAVOLTA I and II),50 leading to the discontinuation of
this biologic in asthma (Supplementary Table 2). The discontinu-
ation could be due to the non-optimal patient selection through
the use of serum periostin, which has only a weak association
with airway periostin level and is therefore not the best bio-
marker for IL-13 activity in the airways. In contrast, FENO is a
good biomarker of IL-13 activity in the airway and is responsive
to treatment with anti-IL-13 antibodies (Table 1).

Fourteen weeks of treatment with tralokinumab, another
human monoclonal IgG4λ antibody targeting IL-13 (Table 3
and Figure 1), was associated with only modest improvement
in FEV1 and some decrease in b2-agonist use (Supplementary
Table 2).51 In a large Phase 2 study, tralokinumab did not sig-
nificantly reduce asthma exacerbation rates in patients with
severe uncontrolled asthma. Improvement in FEV1 with tralo-
kinumab given every 2 weeks and results of post-hoc subgroup
analyses suggested a possible treatment benefit in a defined
population of patients with severe uncontrolled asthma (Sup-
plementary Table 2). This effect is being further investigated in
ongoing Phase 3 trials, along with the potential utility of perios-
tin and dipeptidyl peptidase-4 (DPP-4, a gene whose expression
is induced by IL-13) as biomarkers of interleukin-13 pathway
activation.52 Nevertheless, tralokinumab did not meet the pri-
mary endpoint of a significant reduction in the annual asthma
exacerbation rate in the overall population of severe, uncon-
trolled asthma patients, compared with placebo in STRATOS I,
the first of two pivotal Phase 3 trials (Supplementary Table 2).
Nevertheless, in a planned analysis, a clinically-relevant reduc-
tion in annual asthma exacerbation rate was observed in a sub-
population of patients with an elevated biomarker associated
with increased IL-13 activity.53 Thus, this sub-group of patients
will now be the focus for the future analysis of STRATOS II,
the second ongoing pivotal Phase 3 trial. Indeed, STRATOS I
explored the potential use of biomarkers to identify patients
with an enhanced response to tralokinumab, whereas STRA-
TOS II is designed to validate the biomarker population identi-
fied in STRATOS I. Overall, these recently published clinical
trials on therapeutic antibodies targeting IL-13, have
highlighted relevant limitations with partial effects that could
be due to overlapping biological actions of IL-4 and IL-13. The
combination approach inhibiting both IL-4 and IL-13 is likely
to be more effective.
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Interleukin-4 receptor alpha

Dupilumab, a human monoclonal IgG4k antibody targeting IL-
4Ra and inhibiting both IL-4 and IL-13 signalling pathways,
increased lung function and reduced severe exacerbations in
patients with uncontrolled persistent asthma irrespective of
baseline eosinophil count (Table 3, Figure 1 and Supplementary
Table 2).54 Dupilumab is currently being studied in Phase 3
studies and the results are expected end of 2017 (Supplemen-
tary Table 2). Dupilumab is FDA-approved for atopic dermati-
tis and a proof-of-concept study in nasal polyposis was clearly
positive.55 Altogether, these results implicate an added benefit
for treatment with dupilumab in patients with severe asthma
and co-morbidities such as atopic dermatitis (e.g., in younger
patients) or nasal polyposis (e.g., in late-onset asthmatics).
Notably, three other approaches (a recombinant human IL-4
variant, a recombinant extracellular portion of the human IL-
4Ra, and an antibody) targeting IL-4Ra were discontinued due
to lack of efficacy (Table 3).

Interleukin-5

The importance of targeting the appropriate patient subsets was
highlighted by the clinical development of treatments targeting
IL-5. These treatments did not significantly improve lung func-
tion in an unselected population whilst they improved asthma
control and reduced exacerbations in selected patients with
severe asthma exhibiting an eosinophilic phenotype.56,57 The
importance of IL-5 in driving the persistent systemic and air-
way eosinophilic inflammation has been demonstrated by the
efficacy of mepolizumab, a humanized monoclonal IgG1k anti-
IL-5 antibody approved by the FDA and EMA (Table 3 and
Figure 1), to further decrease eosinophilic inflammation in
those patients with refractory asthma despite high dose of
inhaled or oral corticosteroids.58,59 The clinical relevance of the
persistent eosinophilic inflammation was demonstrated by the
reduction in exacerbation rate and the improvement in quality
of life observed in severe eosinophilic asthma patients receiving
mepolizumab, even if only a modest effect was observed on
FEV1.

58 The DREAM study, a large intravenous mepolizumab
trial in patients with severe asthma receiving high-dose ICS/
LABA treatment with evidence of eosinophilic/type 2-high
inflammation (�1 in the prior year: sputum eosinophils >3%,
>300 eosinophils per mL peripheral blood, or FENO >50 ppb)
identified blood eosinophil counts of 300 cells per mL or greater
as a highly predictive biomarker of treatment response (Supple-
mentary Table 2).56 Three different doses of mepolizumab (75,
250 or 750 mg at 4-week intervals) were equally effective in
decreasing clinically significant asthma exacerbations com-
pared with placebo, with the greatest reductions seen in those
with the highest blood eosinophil counts and greatest prior
exacerbation history. No effect on other asthma outcomes were
observed, including symptoms and FEV1 due to impressive pla-
cebo effects on patient-reported outcomes.56 Similarly, in the
MENSA trial, a large Phase 3 study of patients with eosino-
philic asthma (based on peripheral blood eosinophilia) with
recurrent exacerbations despite high-dose ICS (monthly
75 mg-intravenous or 100 mg-subcutaneous), mepolizumab
significantly decreased exacerbations by 47% to 53%, increased

FEV1 and modestly affected symptoms and asthma control
scores compared with placebo (Supplementary Table 2).60

Like mepolizumab, reslizumab is another humanized mono-
clonal IgG4k anti-IL-5 antibody approved by the FDA and
EMA (Table 3 and Figure 1). Two recent duplicate trials com-
pared reslizumab (3 mg/kg dose, intravenous administration)
to placebo in patients with poorly controlled asthma using
medium-to-high doses ICS, a blood eosinophil count of �400
cells per mL, and at least one severe asthma exacerbation in the
previous year.61 In both Phase 3 studies, patients receiving resli-
zumab had a significant reduction in the frequency of asthma
exacerbations compared with those receiving placebo61 (Sup-
plementary Table 2), reinforcing the role of eosinophils in sev-
eral asthma outcomes.

Interleukin-5 receptor alpha

Benralizumab, a humanized afucosylated monoclonal IgG1k
antibody that binds to IL-5Ra, blocks IL-5 receptor signalling
and induces antibody-directed cell-mediated cytotoxicity lead-
ing to depletion of IL-5Ra-expressing target cells (eosinophils
and basophils, Table 3 and Figure 1).62 In the recent Phase 3
SIROCCO trial, the results confirm the efficacy and safety of
benralizumab for patients with severe asthma and elevated
blood eosinophils, which are uncontrolled by high-dosage ICS
plus LABA, and provide support for benralizumab as an addi-
tional option to treat this disease in this patient population
(Supplementary Table 2).63 In another recent Phase 3 study
(CALIMA trial, Supplementary Table 2), benralizumab signifi-
cantly reduced annual exacerbation rates and was generally
well tolerated in patients with severe, uncontrolled asthma with
blood eosinophils 300 cells per mL or greater.64

Overall, approaches targeting the IL-5 pathway have been
efficacious, with prominent effects on exacerbations in adult
patients with uncontrolled severe eosinophilic asthma. Never-
theless, it remains unclear whether approaches to block the
receptor IL-5Ra and opsonize eosinophils, will differ in effi-
cacy, safety or target endotype from those targeting the ligand
IL-5.43 However, the optimal dosing interval between injections
appears to be different and advantageous for benralizumab (8
weeks) versus for mepolizumab and reslizumab (4 weeks) (Sup-
plementary Table 2).

Limitations of monotherapies: emergence of
combination therapies for severe asthma?

Translation of discoveries into treatments is challenging, time-
consuming and expensive as illustrated by the 10-year gap
between the development of omalizumab, the first biologic for
the treatment of severe allergic asthma, and its approval by
FDA in 2003.12 Generally, only about 1 in 10 therapeutic candi-
dates that enter Phase 1 trials becomes a marketed product, and
this high failure rate contributes substantially to the high costs
of drug development.65

Implicit in this observation is the fact that preclinical models
do not easily or perfectly simulate the vast heterogeneity of the
human disease, and that correlation of pathophysiology with
clinically measurable and meaningful outcomes such as symp-
toms, asthma control and exacerbations, is difficult.66 Indeed,
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although the testing of biologics might begin in animal models,
the immunologic response in human is more complex and het-
erogeneous, encompassing multiple endotypes and regulated
by distinct biological pathways, implicating that asthma is a
syndrome rather than a single disease (Supplementary
Figure 1).32,67 Moreover, it is known that endotypes may some-
what vary over time29,68 and also overlap, because there is cur-
rently no clear demarcation between these groupings.
Therefore, patients may exhibit clinical or pathologic features
of multiple groups, emphasizing the limitations in the current
understanding of endotypes and the difficulty to use them rou-
tinely in clinical practice at this stage.13 Consequently, the con-
cept of treating severe asthma by targeting a single molecule
has had limited success.

ICS, which is currently the mainstay therapy, is thought to
act by suppressing a range of pro-inflammatory pathways.69,70

However, long-term use of high-dose ICS therapy has potential
to cause systemic side effects, such as impaired growth in chil-
dren, decreased bone mineral density, skin thinning and bruis-
ing, and cataracts.71 The emergence of the heterogeneity and
the different endotypes of the disease processes where many
different inflammatory mediators, cytokines and cells are dys-
regulated further highlights that new approaches are required
to treat asthma effectively. Many studies show that airway
inflammation, remodelling and airway hyperresponsiveness are
dissociated and may be mediated by different mechanisms
under different conditions.72 Thus, combination therapies, tar-
geting reciprocally regulated inflammatory and potentiating
pathways in asthma, may be a more effective therapeutic
approach for severe asthma.

Interestingly, in a cross-sectional study of asthmatics of
varying severity (n D 51), gene expression of endobronchial
tissue analysis revealed three major patient clusters: type 2,

type 17, and type 2/type 17-low.73 Type 2 and type 17 patterns
were mutually exclusive in individual patient samples, and
their gene signatures were inversely correlated and differen-
tially regulated by IL-13 and IL-17A. The dichotomous pat-
tern of TH2 and TH17 signatures was explored in a preclinical
model of allergen-induced asthma, which showed that type 2
cytokine suppression promoted TH17 responses. Neutraliza-
tion of IL-4 or IL-13 resulted in increased TH17 cells and neu-
trophilic inflammation in the lung. However, neutralization of
IL-13 and IL-17 protected mice from eosinophilia, mucus
hyperplasia, airway hyperreactivity and abolished the neutro-
philic inflammation, which suggests that combination thera-
pies targeting both pathways may maximize therapeutic
efficacy across a patient population comprising both type 2
and type 17 endotypes (Figure 2).73

Conclusion

The treatment of severe asthma in both adults and children still
relies heavily on the use of high-dose ICS plus a second control-
ler medication (such as LABAs or leukotriene receptor antago-
nists), or systemic steroids.4 However, responses to these
treatments can vary and do not modify the course of the dis-
ease, requiring an urgent need for new and more effective drugs
to prevent the occurrence of potentially life-threatening
episodes.

The addition of omalizumab as the first targeted biologic
approved for asthma treatment has led to renewed optimism of
improvements in outcomes in patients with type 2 severe
asthma. Biologic approaches targeting type 2 inflammation
have since emerged as promising new personalized medicines
in patients with evidence of type 2 inflammation based on spe-
cific biomarker profiles (Table 1 and Figure 1). Indeed, whereas
the monoclonal anti-IL-5 antibodies mepolizumab and reslizu-
mab were not beneficial in unselected adult patients with mod-
erate asthma, they decreased asthma exacerbations and
improved symptoms and lung function in severe asthma
patients with persistent sputum eosinophil counts or increased
blood eosinophil levels (Supplementary Table 2). The first clini-
cal trials using type 2-targeting biologics have highlighted the
importance of determining the optimal biomarkers necessary
to identify and understand which endotypes are responsive to
specific biologics to identify which patients will benefit from
which biologics at which optimal dose (Supplementary Table 1),
thereby allowing a better prediction of responses to biologics.
Progress in this field will not only allow better diagnosis and
targeted treatment, but will also provide feedback on the funda-
mental research questions that need to be addressed. Interest-
ingly, there is a potential for other biologics to provide benefit
in treatment of severe asthma, such as anti-TSLP or anti-IL-33
monoclonal antibodies,4 especially if the key elements for suc-
cessful biologic development are applied (Supplementary
Table 1), such as the identification of the endotypes who will
respond to these biologics identified through biomarkers (Sup-
plementary Figure 1).

Nevertheless, predicting response to therapy remains prob-
lematic. Because the results of the clinical trials summarized in
Supplementary Table 2 varied even for biologics directed
toward the same signalling pathway, it is appreciated that the

Figure 2. Simplified schematic representation of targeted TH2 and TH17 cytokines
therapies that can lead to amplification of activity of the opposing pathway in a
murine house dust mite model of asthma.73 (A) With suppression of TH2 activity by
targeted therapy or corticosteroids, a TH17-permissive environment exists. A direct
relationship between TH17 and TH2 disease exists, whereby, through mutual cross
regulation, TH17 asthma may represent a transition or switch away from TH2-medi-
ated disease. Thus, by treating TH2 patients with corticosteroids, TH17 asthma may
have been promoted. (B) Combination therapy targeting TH2 cytokine, such as
interleukin-13, and TH17 cytokine, such as interleukin-17, in patients expressing
either a TH2 or TH17 signature may provide additional efficacy over single TH2 or
TH17 inhibition. TH2: T-helper type 2 cell; TH17: T-helper type 17 cell.
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response to a biologic can be confounded by multiple factors,
including treatment duration, dose, asthma severity and endo-
type and differing outcome measures assessed.43 Moreover,
much remains to be understood regarding their long-term effi-
cacy and safety, their comparative therapeutic efficacy, and,
finally, their cost-effectiveness. Additionally, with only omali-
zumab approved for children of six to 11 years of age (Table 3),
accurate biomarkers to identify responders are still currently
lacking and cost-utility analyses need to be investigated for
pediatric studies. Otherwise, development of biologics in severe
asthma patients lacking type 2 biomarkers remains in its
infancy and will require greatly improved molecular under-
standing of their underlying pathologies.

It is known that endotypes may somewhat vary over time29,68

and also overlap, because there is currently no clear demarcation
between these groupings. Consequently, the concept of treating
severe asthma by targeting a single molecule has been successful
only in highly selected patient subgroups. Combination therapies,
targeting reciprocally regulated inflammatory and potentiating
pathways in asthma, may be a more effective therapeutic
approach for a broader population of patients with severe asthma.
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