597 research outputs found

    Effect of microchannel aspect ratio on residence time distributions and the axial dispersion coefficient

    Get PDF
    The effect of microchannel aspect ratio (channel depth/channel width) on residence time distributions and the axial dispersion coefficient have been investigated for Newtonian and shear thinning non-Newtonian flow using computational fluid dynamics. The results reveal that for a fixed cross sectional area and throughput, there is a narrowing of the residence time distribution as the aspect ratio decreases. This is quantified by an axial dispersion coefficient that increases rapidly for aspect ratios less than 0.3 and then tends towards an asymptote as the aspect ratio goes to 1. The results also show that the axial dispersion coefficient is related linearly to the Reynolds number when either the aspect ratio or the mean fluid velocity is varied. However, the fluid Péclet number is a linear function of the Reynolds number only when the aspect ratio (and therefore hydraulic diameter) is varied. Globally, the results indicate that microchannels should be designed with low aspect ratios (≤ 0.3) for reduced axial dispersion

    Quantum confinement effects in Pb Nanocrystals grown on InAs

    Full text link
    In the recent work of Ref.\cite{Vlaic2017-bs}, it has been shown that Pb nanocrystals grown on the electron accumulation layer at the (110) surface of InAs are in the regime of Coulomb blockade. This enabled the first scanning tunneling spectroscopy study of the superconducting parity effect across the Anderson limit. The nature of the tunnel barrier between the nanocrystals and the substrate has been attributed to a quantum constriction of the electronic wave-function at the interface due to the large Fermi wavelength of the electron accumulation layer in InAs. In this manuscript, we detail and review the arguments leading to this conclusion. Furthermore, we show that, thanks to this highly clean tunnel barrier, this system is remarkably suited for the study of discrete electronic levels induced by quantum confinement effects in the Pb nanocrystals. We identified three distinct regimes of quantum confinement. For the largest nanocrystals, quantum confinement effects appear through the formation of quantum well states regularly organized in energy and in space. For the smallest nanocrystals, only atomic-like electronic levels separated by a large energy scale are observed. Finally, in the intermediate size regime, discrete electronic levels associated to electronic wave-functions with a random spatial structure are observed, as expected from Random Matrix Theory.Comment: Main 12 pages, Supp: 6 page

    Ecological intensification in multi-trophic aquaculture ponds: an experimental approach

    Get PDF
    As aquaculture production is increasing considerably, it needs to become more environment-friendly. Based on a participatory process, an ecologically intensive pond system was designed to test three hypotheses: a combination of intensive and extensive areas provides more ecosystem services than an intensive or extensive area alone; coupling a planted lagoon with an intensive pond decreases the latter's environmental impacts and maintains or increases its fish productivity; and using formulated feed in polyculture increases growth of all fish species. To test these hypotheses, we designed a specific integrated multi-trophic aquaculture system composed of a polyculture of common carp (Cyprinus carpio), roach (Rutilus rutilus) and tench (Tinca tinca) and a lagoon planted with macrophytes to filter the water. This pond system was compared with “extensive” (unfed) and “semi-intensive” fishpond systems without a planted lagoon. We measured fish growth performances, water quality, chlorophyll concentrations and water and sediment nutrient contents. We also calculated the mass balance of nutrients. Concentrations of total nitrogen and phosphorus increased in sediments, indicating that nutrients were stored in the ponds, especially in planted lagoon; the planted lagoon decreased phytoplankton development, and limited blooms, but it slightly decreased fish growth performances compared to those in semi-intensive fishponds. The formulated feed supplied clearly increased fish growth performances and the survival rate, and seemed also to increase the use of available nutrients in ponds, which improved the production of overall fish biomass. In conclusion, the planted lagoon provides ecosystem services on nutrients cycling and habitat for natural biodiversity. Improving knowledge about nutrient cycles from formulated feed within the pond food web would be useful to increase the amounts of nutrients converted into fish biomass

    The case of societal collapse in Europe

    Get PDF
    Acknowledging that the growth forecast in France is nil or virtually non-existent and that it is also the case for the main European countries, EU governments will have to find tax revenues rapidly from their fellow citizens, which will exacerbate the tax burden, social inequalities and shortly, it will dramatically increase the risk of implosion of our societal organization

    The global economy, a new vision for the euro

    Get PDF
    From our research, one of the key to restore European competitiveness appears to be the change of how the Euro is being calculated in order to reflect the recent weakness of the here above cited European countries economy. In nowadays global economy, European trading partners must learn how to play "global" and a change of parity between the Euro, the Yuan and the US dollar is consequently inevitable

    The global economy, a new vision for the euro

    Get PDF
    From our research, one of the key to restore European competitiveness appears to be the change of how the Euro is being calculated in order to reflect the recent weakness of the here above cited European countries economy. In nowadays global economy, European trading partners must learn how to play "global" and a change of parity between the Euro, the Yuan and the US dollar is consequently inevitable

    Aggregation and breakup of acrylic latex particles inside millimetric scale reactors

    Get PDF
    Aggregation of acrylic latex is investigated inside tubular millireactors working under laminar hydrodynamic conditions. The size distribution and fractal dimension of aggregates are measured using light scattering. Results show that the equilibrium between rupture and aggregation is achieved quickly, allowing the study of cluster size distribution and shape at the aggregation/rupture steady state. Both laminar hydrodynamic conditions and high shear rate are suspected to promote the formation of aggregates with a high fractal dimension, which means that the particles are almost spherical, thereby offering an interesting alternative to conventional batch processes. These results can provide useful information for industries aiming at producing aggregates at specified size and quality

    Towards the design of an intensified coagulator

    Get PDF
    This study compares the hydrodynamics in three millimeter-scale continuous reactor geometries that can be easily used in laboratories and industries – a straight tube, a coiled tube and a Dean-Hex reactor – via numerical simulations and analyses the data in a way that is specifically relevant to coagulation processes, thereby offering insights for engineers to develop new coagulation reactors. A numerical approach based on Lagrangian particle tracking is presented to better understand the impact of the geometry and flow on properties that influence coagulation. The results show that the Dean-Hex meandering geometry provides narrower residence time and shear rate distributions, as well as higher mean average shear rates and Camp number distribution than the other geometries. This is attributed to the generation of transverse flows and radial mixing in the Dean-Hex reactor and suggests that a faster and more homogenous coagulation can be expected

    Unusual use of objects after unilateral brain damage. The technical reasoning model.

    Get PDF
    International audienceIt has been suggested that gesture engrams, conceptual knowledge and/or the ability to infer function from structure can support object use. The present paper proposes an alternative view which is based upon the idea that object use requires solely the ability to reason about technical means provided by objects. Technical means are abstract principles which are not linked with any object representation (e.g., cutting involves the opposition between dense and permeable material). The technical reasoning model predicts that the inability to perform technical reasoning should impair performance in any situation requiring the use of objects (in a conventional way or not). Twenty left brain-damaged (LBD) patients, 11 right brain-damaged (RBD) patients and 41 healthy controls were examined on experimental tests assessing the conventional use of objects (e.g., screwing a screw with a screwdriver), conceptual knowledge about object function, pantomime of object use and recognition of object utilization gestures. We also designed the Unusual Use of Objects test, which demands unusual applications of objects to achieve a purpose for which the usually applied object is not provided (e.g., screwing a screw with a knife). The key findings are that only LBD patients have more difficulties on the Unusual Use of Objects Test than controls or RBD patients, and that the severity of their impairment is correlated with that on conventional use of objects. Correlations with tests assessing conceptual knowledge as well as with tests of pantomime of object use and recognition of object utilization gestures were weaker. These results support the technical reasoning model and question the role of conceptual knowledge and gesture engrams in object use. Since the technical reasoning model also predicts two distinct technical disorders, the discussion focuses on the existence of these disorders in regard to individual performance profiles obtained in the Unusual Use of Objects test
    corecore