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Abstract 

The effect of microchannel aspect ratio (channel depth/channel width) on residence time 

distributions and the axial dispersion coefficient have been investigated for Newtonian and 

shear thinning non-Newtonian flow using computational fluid dynamics. The results reveal 

that for a fixed cross sectional area and throughput, there is a narrowing of the residence time 

distribution as the aspect ratio decreases. This is quantified by an axial dispersion coefficient 

that increases rapidly for aspect ratios less than 0.3 and then tends towards an asymptote as 

the aspect ratio goes to 1. The results also show that the axial dispersion coefficient is related 

linearly to the Reynolds number when either the aspect ratio or the mean fluid velocity is 

varied. However, the fluid Péclet number is a linear function of the Reynolds number only 

when the aspect ratio (and therefore hydraulic diameter) is varied. Globally, the results 

indicate that microchannels should be designed with low aspect ratios (≤ 0.3) for reduced 

axial dispersion. 

 

Keywords. residence time distributions (RTD; axial dispersion; aspect ratio; microchannel; 

microreactor; computational fluid dynamics (CFD); laminar flow. 
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1 Introduction 

Amongst the different criteria used for characterising the performance of microreactors, the 

determination of residence time distributions is particularly important when chemical reaction 

applications are considered. Due to the predominantly laminar flow in microreactors, the 

velocity profile in the microchannel is typically parabolic; this gives rise to temporal 

inhomogeneities in the flow, which translates into wide residence time distributions. For 

chemical reaction applications, the broadening of the residence time distribution most often 

results in a decrease of the selectivity for the desired product and/or of the product quality. 

For this reason, a number of studies in the chemical engineering literature have been devoted 

to the experimental [1-7] or numerical [8-12] determination of residence time distributions 

and associated modelling. Most of these studies deal with the performance evaluation of 

existing or new microreactor geometries and the comparison of different designs in terms of 

residence time distributions. On the other hand, little attention has been paid to basic channel 

design in microreactors and microstructured reactors, and the effects on residence time 

distribution. 

 In the design of microchannels within microreactors, the basic geometrical parameters 

are often conditioned by the microfabrication techniques available for the microchannel 

manufacturing. Today, many techniques lead to the fabrication of microchannels with a 

rectangular cross section. The different geometrical parameters of such microchannels are 

few: the channel depth, width and length, as well as the topographical shape. It has previously 
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been shown that the topographical shape of the microchannels can influence the performance 

of both single and two-phase flow applications. In particular, meandering channels give rise to 

secondary flow patterns and in some cases Dean vortices, which reduce the broadening of 

residence time distributions, improve mixing and enhance heat transfer significantly (e.g. [2, 

4, 8, 13, 14]). In contrast, the effects of the channel dimensions and the associated aspect 

ratio, α (channel depth/channel width), on transport phenomena are less detailed. It is well 

known that for laminar flow in macro-scale rectangular ducts the aspect ratio affects the 

friction factor f (and therefore the pressure drop), as well as heat transfer [15]. For fully 

developed laminar flow, the product f Re decreases towards an asymptotic limit as the aspect 

ratio approaches unity. In heat transfer applications, the aspect ratio modifies the Nusselt 

number, depending on the number and disposition of the walls transferring heat. These trends 

can be expected to be the same for flow in sub-millimeter channels. On the other hand, some 

specific studies on the effects of aspect ratio on mixing and diffusion in microchannels have 

been conducted. Gobby et al. [16] investigated the effects of aspect ratio on mixing of gases 

in T-micromixers using computational fluid dynamics (CFD). They modified the aspect ratio 

in two ways: by keeping the microchannel width constant and then the hydraulic diameter 

constant. At constant width, the channel length required for mixing was almost independent 

of the aspect ratio, whereas for constant hydraulic diameter, the mixing length decreased for 

increasing aspect ratio (and hence decreasing channel width). This is logical since the 

characteristic length for diffusion decreases and the interface between fluids increases. Chen 

et al. [17] studied the effect of aspect ratio in the range of 0.05–1 (with constant channel 
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width) on diffusive liquid mixing in a T-micromixer. They found that non-uniform mixing by 

diffusion (the butterfly effect) originates from the top and bottom microchannel walls and is 

more pronounced for aspect ratios > 0.5. However, no recommendations on best channel 

design were made. Finally, Dutta et al. [18, 19] have investigated the effect of aspect ratio on 

Taylor-Aris dispersivity in microchannels. In long-time dispersion regimes, i.e. where the 

characteristic fluid processing time is equivalent to or greater than the time for molecular 

diffusion (Fourier number, Fo ≥ 1), the axial (convective) dispersion in laminar flows is 

limited by molecular diffusion across the streamlines. Taylor [20] described this process by an 

effective dispersivity, which is linearly dependent on the square of the Peclet number, with a 

slope that is a function of the shape of the channel cross section. Dutta et al. [18, 19] 

determined the geometrical coefficient that relates the square of the Peclet number to the 

effective dispersivity for various channel aspect ratios of rectangular microchannels. For a 

fixed channel depth, the authors found that as the aspect ratio increased in the limit of α→1 

(reducing the cross sectional area), the coefficient decreased. On the other hand, for a fixed 

cross sectional area the coefficient increased asymptotically as the aspect ratio increased in 

the limit of α→1. For the microfluidic applications considered by those authors (for example 

chromatographic separations), it is suggested that microchannels be designed by choosing the 

smallest possible microchannel depth that can be fabricated and then the appropriate aspect 

ratio to achieve the desired flow rate; this will result in limited Taylor-Aris dispersion. 

 In this work, the effect of microchannel aspect ratio on residence time distribution and 

the axial dispersion coefficient obtained with both Newtonian and shear-thinning fluids is 
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investigated. It employs a chemical engineering approach focussing on the use of 

microreactors and microstructured reactors for production purposes. In this respect, the aim is 

to gain insight on how to design rectangular channels for a desired throughput and how axial 

dispersion is modified with the aspect ratio and typical dimensionsless numbers. The 

approach described in this study employs CFD to compute the velocity fields and Lagrangian 

particle tracking for determining residence time distributions. Moreover, it is a generalised 

methodology that can be applied to flows in all types of reactor geometries and with 

rheologically complex fluids.  

 

2 Microchannel Geometries 

Rectangular microchannels of length L = 0.005 m have been used in this study. The channel 

aspect ratio is defined as α = channel depth (H) / channel width (W) and has been varied from 

0.05–1 whilst keeping a constant channel cross-sectional area of A = 2.25×10
-8
 m

2
. The aspect 

ratios and the corresponding channel dimensions, including the hydraulic diameter (defined as 

dH = 4A / wetted perimeter) are given in Table 1. The L / dH ratio then varies from 33–78 as 

the aspect ratio decreases. The residence times distributions obtained in the rectangular 

channels are compared with that obtained in a tubular microchannel with radius r ≈ 85 µm, 

giving a cross-sectional area equal to A. 
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3 Numerical Methods 

The numerical simulation of the flow in the microchannels has been performed using 

ANSYS-CFX11 [21]. This is a general purpose commercial CFD package that solves the 

Navier-Stokes equations using a finite volume method via a coupled solver. The analysis 

procedure has been carried out in two steps. Firstly, the velocity and pressure fields in the 

mixer are solved. These values are then used to calculate particle trajectories within the flow 

field, which are used to determine the residence time distributions. 

3.1 Flow computation 

For each microchannel geometry, a mesh with an inflation layer on the channel walls was 

created, as shown in Figure 1. The mesh for each microchannel comprised approximately 

550 000 prismatic and hexahedral elements (400 000 nodes). A preliminary grid convergence 

study was carried out in order to verify that the solution is grid independent. Water 

(µ = 0.00089 Pa.s, ρ = 997 kg.m-3
) was used as the principal Newtonian fluid; other model 

Newtonian fluids with viscosities of 0.02, 0.05 and 0.1 Pa.s were also tested. The non-

Newtonian fluid was a 0.5 % Sodium Carboxymethyl Cellulose (CMC) solution (n = 0.3896, 

K = 2.904 Pa.s
n
, µ0 = 0.21488 Pa.s), which exhibits shear thinning behaviour. To describe this 

behaviour, a modified power law model [22] was used. 
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where K is the consistency index and n is the flow behaviour index, which is equal to 1 for a 

Newtonian fluid. This model takes into account the Newtonian behaviour exhibited by shear 

thinning fluids at low shear rates, the power law behaviour at high shear rates and an a 

transitional regime at intermediate shear rates. The associated Reynolds number is the 

modified power law fluid Reynolds number, Rem for flow in rectangular ducts as described by 

Park and Lee [23]. 

The boundary condition at the channel inlet was described by a laminar velocity 

profile for rectangular ducts using the approximation given in Shah and London [15]. This 

ensures that the fully developed laminar velocity profile is reached very quickly. In order to 

investigate the effects of the microchannel aspect ratio for both the Newtonian and shear 

thining fluids, and also Newtonian viscosity, the mean velocity, u, was fixed at 0.01 ms
−1
 for 

all channel geometries; this enabled their comparison at constant throughput. This 

corresponds to a laminar flow regime with Reynolds numbers (Re) in the range 0.014–1.68 

for the Newtonian fluids and Rem = 0.008–0.014 for the shear thinning fluid, depending on 

the aspect ratio of the microchannel. To investigate the effect of velocity on axial dispersion, a 

range of mean velocities were simulated in a single geometry (α = 1) corresponding to 

corresponding Reynolds number ranges of 0.4–2 and 0.006–0.03 for the Newtonian and 

power law fluids, respectively. At the outlet, a constant pressure condition (P = 1 atm) was 
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imposed and no-slip boundary conditions were applied at all walls. The ANSYS-CFX11 

solver was used to solve the steady-state momentum and continuity equations for the fluid 

flow in the microchannels. The advection terms in each equation were discretized using a 

bounded second order differencing scheme to minimise the effects of numerical diffusion. 

Simulations were typically considered converged when the normalised residuals for the 

velocities fell below 1×10−6
. 

 

3.2 Particle tracking 

In this study, massless fluid particles are followed using a Lagrangian particle tracking 

method in order to determine the residence time distributions. This approach avoids the 

introduction of numerical diffusion that results if a scalar is tracked, which confuses the 

mixing behaviour. In addition to the fact that no interaction between the individual particles 

exists, it must be pointed out that this method does not take into account species transport by 

molecular diffusion. This is a valid assumption in the cases studied here since the process 

time, i.e. the mean residence time, of the fluid in the microchannels is much shorter than the 

time needed to mix radially by molecular diffusion and therefore Taylor-Aris dispersion is 

negligible. 

Once the velocity field has been computed, 5000 weightless particles that are 

randomly distributed over the section of the microchannel inlet are released into the flow. The 



10 

 

 

 

 

 

movement of the particle tracers in the flow is then determined by integrating the vector 

equation of motion for each particle: 

( )xx
u=

 td

d
 (2) 

In order to obtain a sufficient degree of accuracy when integrating the equation of motion, a 

fourth order Runge-Kutta scheme with adaptive step size has been employed. Furthermore, a 

restitution coefficient of unity is applied to the microchannel walls. This avoids particle 

trajectories being trapped near the walls where the local velocity is close to zero (less than 2 

% of particles are stopped between the inlet and the outlet of the mixer). 

 

3.3 Residence time distribution 

The RTD for the fluid flowing through the various microchannel geometries was calculated 

by determining the particle trajectories as described in paragraph 3.2, and by recording the 

particle residence times from 1 mm after the inlet to the outlet of the microchannel. By 

recording the residence times after 1 mm of channel length, a fully developed laminar flow is 

ensured since 1 mm is 10-25 times longer than a typical laminar flow development length, 

estimated for a uniform velocity profile at the channel inlet. This is particularly important for 

non-Newtonian flows whose velocity profiles are not accurately approximated by the 

rectangular channel velocity profile approximation given in [15]. The residence time 

distribution, E(t), as described by Fogler [24], can then computed as: 
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where ∆Nw is the number of particles that have a residence time in the mixer between time t 

and t+∆t each weighted by their initial velocity normalised by the maximum velocity in the 

microchannel and Nw is the total weight number of particles released in the microchannel. 

This approach is equivalent to the analysis of a pulse injection of tracer. From E(t), the first 

and second moments, i.e. the mean residence time, tm, and the variance about the mean, σ 2, as 

well as a normalised residence time distribution, E
*
(t), can be determined. For open systems 

the mean residence time and the variance are related to the reactor Péclet number Per [24], 

following: 
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The reactor Péclet number is defined as: 

a

r
D

uL
Pe =  (5) 

where L is the characteristic length defined by the length of the channel and Da is the axial 

dispersion coefficient. Relation (4) is derived from the 1-dimensional axial dispersion model 

in which Da is defined as the resultant of three components being molecular diffusion, 

turbulent diffusion and spatial dispersion [25]: 

stma DDDD ++=  (6) 
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For the cases considered in the present study, molecular diffusion is considered negligible and 

the turbulent diffusion is null. As a result, the axial dispersion is entirely due to spatial 

dispersion, which is induced by the heterogeneities in the laminar velocity profile. 

4 Results & Discussion 

Residence time distributions are important for evaluating the performance of chemical 

reactors and are of particular relevance to the performance of microreactors, where the flow is 

typically laminar and there is much axial dispersion. Figure 2 shows the normalised residence 

time distributions for the laminar flow of a Newtonian fluid in rectangular microchannels with 

different aspect ratios and compares them with that obtained in a tubular microchannel with 

an equivalent cross-section. Firstly, it is clear that there is a relatively large amount of 

dispersion for all represented cases, which is not surprising for laminar flow. The 

microchannel with a square cross section (α = 1) results in more axial dispersion than a 

tubular microchannel, whilst the RTD in the microchannel with α = 0.5 is equivalent to that 

obtained with the circular cross-section. As the aspect ratio decreases and the microchannels 

become wide and shallow, the spread of the RTD curves decreases and shifts towards that of 

an ideal plug flow. In fact, as the aspect ratio decreases the centreline velocity across the 

width of the channel flattens out and the maximum velocity decreases. As a result, the 

velocity distribution in the channel cross section narrows, decreasing the standard deviation 

about the mean velocity. 
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Figure 3 shows the effect of microchannel aspect ratio on the RTD obtained with the 

non-Newtonian shear thinning fluid and compares the RTD for α = 1 with the results of the 

Newtonian fluid. It can be seen that as the flow behaviour index passes from n = 1 for the 

Newtonian fluid to n = 0.39 for the power law fluid, there is a decrease in the spread of the 

RTD and a shift towards plug flow. This agrees with the numerical and experimental 

observations made by other authors for shear-thinning pseudoplastic flows in coiled tubes 

[26-28] and corresponds to a flattening of the axial velocity profile, which subsequently 

decreases the axial dispersion. As the aspect ratio decreases, the RTD curves of the non-

Newtonian fluid narrow and approach that of ideal plug flow, in a similar manner to that 

observed for the Newtonian fluid. 

The observations made from the RTD in Figures 2 and 3 can be quantified via the 

Péclet number which is related to the moments of the residence time distribution by equation 

(4). Figure 4 presents the reactor Péclet number as a function of the microchannel aspect ratio 

for both the Newtionian and power law fluids. As a higher Péclet number indicates smaller 

axial dispersion, the graph quantifies the reduction in axial dispersion when using the model 

non-Newtonian fluid compared with the Newtonian fluid. Furthermore, it clearly shows that 

the Péclet number decreases towards an asymptotic value as the aspect ratio increases and 

approaches a value of 1. Hence, axial dispersion is reduced with decreasing aspect ratio, i.e. 

as the channels become wide and shallow. It can be seen that as the aspect ratio decreases 

below approximately α = 0.3, the changes in the Péclet number become increasingly 

important, reducing thus the axial dispersion at the same rate. It is interesting to note that the 
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shapes of the curves given in Figure 4 are very similar to that given by Shah and London [15] 

for the symmetric wall heating of macro scale rectangular ducts. They present the Nusselt 

number as a function of the aspect ratio and show that the Nusselt number increases (and 

therefore convective heat transfer) as the ducts become wide and shallow. Furthermore, the 

tangents to their curve at α = 0 and α = 1 intersect at approximately α ≈ 0.3; it is at values of 

α below this that convective heat transfer is rapidly improved. 

From the Péclet number, one can deduce the axial dispersion coefficient. Figure 5 

presents the effect of the aspect ratio on the axial dispersion coefficient. As expected, the 

values of the dispersion coefficients are lower for the modified power law fluid than for the 

Newtonian fluid and they increase asymptotically as α → 1. Quantitatively, the values of the 

axial dispersion coefficients are of the order of 10
–6
 m.s

–2
, which is approximately 1000 faster 

than molecular diffusion in liquids. 

When the aspect ratio of a channel decreases for a given cross-sectional area, the 

hydraulic diameter also decreases, which results of course in a decrease of the Reynolds 

number. In Figure 6, the effects of varying different parameters of the Reynolds number on 

the axial dispersion coefficient are considered for both the Newtonian and the non-Newtonian 

fluids. The Reynolds number is modified in one of three ways: by varying the aspect ratio – 

and therefore the hydraulic diameter – at fixed flowrate (i.e. mean velocity); by varying the 

flowrate at fixed aspect ratio; by varying the viscosity whilst keeping the flowrate and aspect 

ratio constant. It can be seen that the axial dispersion coefficient is linearly dependent on the 
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Reynolds number when either the flowrate (or mean velocity) or the aspect ratio are varied, 

and the importance of both parameters appear to be similar. On the other hand, the axial 

dispersion coefficient is independent of the Reynolds number when the Reynolds number is 

modified by the Newtonian fluid viscosity. 

An alternate manner of presenting the data in Figure 6 is adimensionally. Figure 7 

presents the fluid Péclet number as a function of the Reynolds number, the latter being varied 

by modifying the aspect ratio, the mean velocity or the fluid viscosity. Using this 

representation, it can be seen that there is a linear dependence of the Péclet number on the 

Reynolds number only if the Reynolds number is modified by varying the aspect ratio (or 

hydraulic diameter) of the microchannel. The Péclet number remains more or less constant 

over the range of Reynolds numbers studied when the mean velocity or the Newtonian 

viscosity of the fluids is modified. 

 

5 Conclusions 

CFD simulations of Newtonian and shear thinning fluid flows have been performed in order 

to evaluate the effect of microchannel aspect ratio on residence time distribution and axial 

dispersion. The approach described for calculating the residence time distributions is a 

generalised methodology that can be applied to all types of reactor geometries and complex 

fluids. For straight channels where the streamlines are linear and parallel to the main axis, 

residence time distributions can essentially be estimated from the fully developed laminar 
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velocity profile. However, for arbitrary channel cross sections and non-Newtonian flows, the 

laminar velocity profiles cannot be approximated by simple equations. The advantage of using 

CFD to resolve the Navier-Stokes equations is that the fully developed laminar velocity 

profile and fields can be determined for a given geometry and fluid type (in the limits of the 

fluid model). Furthermore, the use of Lagrangian particle tracking enables the residence times 

of massless tracer elements to be determined, which is particularly important when the 

particle trajectories are not linear, such as in complex reactor geometries. 

In this study, it has been shown that for constant cross sectional area and constant 

throughput, the residence time distributions narrow as the aspect ratio decreases. This effect is 

found to be even more pronounced for the shear thinning non-Newtonian flow. The residence 

time distributions are quantified by the reactor Péclet number, which is shown to decrease 

asymptotically as the aspect ratio increases. The Péclet number starts to increase sharply at 

aspect ratios approximately < 0.3, signifying reduction in axial dispersion. The axial 

dispersion coefficient has shown to increase asymptotically with increasing aspect ratio and is 

linearly dependent on the Reynolds number if the latter is varied by the velocity or the aspect 

ratio. On the other hand, the fluid Péclet scales with the Reynolds number only if the channel 

aspect ratio is varied. 

Overall, the results of this study indicate that in order to obtain narrowed residence 

time distributions and reduced axial dispersion, microchannels should be designed with low 

aspect ratios (approximately α ≤ 0.3) such that the channels are wide and shallow. The same 
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range of aspect ratios has also shown to be favourable for uniform diffusive mixing [17] and 

improved convective heat transfer [15]. 
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List of symbols 

dH hydraulic diameter (4HW/(2(H+W)) [m] 

Da axial dispersion coefficient [m.s
–2
] 

Dm molecular diffusion coefficient [m.s
–2
] 

Ds spatial dispersion coefficient [m.s
–2
] 

Dt turbulent diffusion coefficient [m.s
–2
] 

E(t) residence time distribution function [–] 

E*(t) normalised residence time distribution function (E(t).tm
–1
) [–] 

f friction factor [–] 

H depth of microchannel [m] 

K power law consistency [Pa.s
n
] 

l characteristic length scale [m] 

L microchannel length [m] 
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n power law flow index [–] 

Nw total weighted number of tracer particles [–] 

∆Nw velocity weighted number of tracer particles exiting the microchannel in a given time 

class [–] 

P pressure (Pa) 

t time [s] 

tm mean residence time [s] 

u mean velocity [m.s
–1
] 

W width of microchannel [m] 

Greek letters 

α aspect ratio (H/W) [–] 

β shear rate parameter ((µ0/K).(u/dH)
1–n
) [–] 

γ&  shear rate [s
–1
] 

µ Newtonian viscosity [Pa.s] 

µ0 zero shear rate viscosity [Pa.s] 

µa apparent viscosity [Pa.s] 

µ*
 reference viscosity (µ0.(1+β)–1) [Pa.s] 

ρ density [kg.m
–3
] 

σ 2
 variance about the mean residence time [s

2
] 
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Dimensionless numbers 

Fo Fourier (tDm.l
–2
) 

Per Reactor Péclet number (uL.Da
–1
) 

Pef Fluid Péclet number (udH.Da
–1
) 

Re Reynolds number (ρ udH.µ –1
) 

Reg Generalised power law fluid Reynolds number (ρ u2–ndHn.K–1
) 

Rem Modified power law fluid Reynolds number (ρ udH.µ∗–1
) 

Sc Schmidt number (µ.(ρ Dm)
–1
) 
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Table 1 Channel aspect ratio, α, and corresponding channel dimensions. 

αααα = H / W H (µm) W (µm) dH (µm) 

1 / 20 33 671 64 

1 / 10 47 474 86 

1 / 8 53 424 94 

1 / 6 61 367 105 

1 / 4 75 300 120 

1 / 2 106 212 141 

1 150 150 150 
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List of Figures 

Figure 1: Examples of the meshing used on microchannels. (a) α = 1; (b) α = 0.05. 

Figure 2: Effect of aspect ratio on residence time distributions for Newtonian flow. 

Figure 3: Effect of aspect ratio on residence time distributions for shear thinning non-

Newtonian flow. 

Figure 4: Evolution of the reactor Péclet number with the microchannel aspect ratio. 

Figure 5: Evolution of the axial dispersion coefficient with the microchannel aspect ratio. 

Figure 6: Dependency of the axial dispersion coefficient on the Reynolds number. Black 

symbols indicate that the Reynolds number was varied by modifying the aspect ratio (and thus 

the hydraulic diameter). Grey symbols indicate that the Reynolds number was varied by 

modifying the mean fluid velocity. Unfilled symbols indicate that the Reynolds number was 

varied by modifying the viscosity (Newtonian fluid only). 

Figure 7: Dependency of the fluid Péclet number on the Reynolds number. Black symbols 

indicate that the Reynolds number was varied by modifying the aspect ratio (and thus the 

hydraulic diameter). Grey symbols indicate that the Reynolds number was varied by 

modifying the mean fluid velocity. Unfilled symbols indicate that the Reynolds number was 

varied by modifying the viscosity (Newtonian fluid only). 
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