6,228 research outputs found

    A Remark on the Spontaneous Symmetry Breaking Mechanism in the Standard Model

    Full text link
    In this paper we consider the Spontaneous Symmetry Breaking Mechanism (SSBM) in the Standard Model of particles in the unitary gauge. We show that the computation usually presented of this mechanism can be conveniently performed in a slightly different manner. As an outcome, the computation we present can change the interpretation of the SSBM in the Standard Model, in that it decouples the SU(2)-gauge symmetry in the final Lagrangian instead of breaking it.Comment: 16 page

    A tractable method for describing complex couplings between neurons and population rate

    Full text link
    Neurons within a population are strongly correlated, but how to simply capture these correlations is still a matter of debate. Recent studies have shown that the activity of each cell is influenced by the population rate, defined as the summed activity of all neurons in the population. However, an explicit, tractable model for these interactions is still lacking. Here we build a probabilistic model of population activity that reproduces the firing rate of each cell, the distribution of the population rate, and the linear coupling between them. This model is tractable, meaning that its parameters can be learned in a few seconds on a standard computer even for large population recordings. We inferred our model for a population of 160 neurons in the salamander retina. In this population, single-cell firing rates depended in unexpected ways on the population rate. In particular, some cells had a preferred population rate at which they were most likely to fire. These complex dependencies could not be explained by a linear coupling between the cell and the population rate. We designed a more general, still tractable model that could fully account for these non-linear dependencies. We thus provide a simple and computationally tractable way to learn models that reproduce the dependence of each neuron on the population rate

    Blindfold learning of an accurate neural metric

    Full text link
    The brain has no direct access to physical stimuli, but only to the spiking activity evoked in sensory organs. It is unclear how the brain can structure its representation of the world based on differences between those noisy, correlated responses alone. Here we show how to build a distance map of responses from the structure of the population activity of retinal ganglion cells, allowing for the accurate discrimination of distinct visual stimuli from the retinal response. We introduce the Temporal Restricted Boltzmann Machine to learn the spatiotemporal structure of the population activity, and use this model to define a distance between spike trains. We show that this metric outperforms existing neural distances at discriminating pairs of stimuli that are barely distinguishable. The proposed method provides a generic and biologically plausible way to learn to associate similar stimuli based on their spiking responses, without any other knowledge of these stimuli

    On the relative impact of subgrid-scale modelling and conjugate heat transfer in LES of hot jets in cross-flow over cold plates

    Get PDF
    This work describes numerical simulations of a hot jet in cross-flow with applications to anti-ice systems of aircraft engine nacelles. Numerical results are compared with experimental measurements obtained at ONERA to evaluate the performances of LES in this industrial context. The combination of complex geometries requiring unstructured meshes and high Reynolds number does not allow the resolution of boundary layers so that wall models must be employed. In this framework, the relative influence of subgrid-scale modelling and conjugate heat transfer in LESs of aerothermal flows is evaluated. After a general overview of the transverse jet simulation results, a LES coupled with a heat transfer solver in the walls is used to show that thermal boundary conditions at the wall have more influence on the results than subgrid scale models. Coupling fluid flow and heat transfer in solids simulations is the only method to specify their respective thermal boundary conditions

    Numerical investigation of the real and ideal gap profiles in the calculation of the pressure distortion coefficient and piston fall rate of an LNE 200 MPa pressure balance

    Get PDF
    This paper aims to investigate, by means of numerical simulation, the effect of gap profiles on the calculation of the pressure distortion coefficient (λ) and the piston fall rate (vf) of two piston-cylinder units used in a Laboratoire National de Métrologie et d'Essais (LNE) 200 MPa pressure balance. The ideal mean gap width between the piston and the cylinder was obtained after measuring the piston fall rate at a low pressure, while the piston radius was obtained from the cross-float experiments at a low pressure. The real gap width was obtained from dimensional measurements by measuring the diameter and straightness of the piston and the cylinder. The piston and cylinder radial distortions were calculated using the finite element method. The pressure distribution in the gap was calculated on the basis of the Navier-Stokes equation for Newtonian viscous flow. The results such as pressure distributions, radial distortions, the pressure distortion coefficient and the piston fall rate were presented for the free-deformation operating mode of the assemblies. The calculation resulted in ideal and real gap profiles indicating that the average pressure distortion coefficient was in good agreement within 0.017 × 10-6 MPa-1 and the calculations of piston fall rate depended on the gap profile especially at the inlet and outlet zones of the engagement length.Laboratoire National de Métrologie et d'Essai

    Closed-loop estimation of retinal network sensitivity reveals signature of efficient coding

    Full text link
    According to the theory of efficient coding, sensory systems are adapted to represent natural scenes with high fidelity and at minimal metabolic cost. Testing this hypothesis for sensory structures performing non-linear computations on high dimensional stimuli is still an open challenge. Here we develop a method to characterize the sensitivity of the retinal network to perturbations of a stimulus. Using closed-loop experiments, we explore selectively the space of possible perturbations around a given stimulus. We then show that the response of the retinal population to these small perturbations can be described by a local linear model. Using this model, we computed the sensitivity of the neural response to arbitrary temporal perturbations of the stimulus, and found a peak in the sensitivity as a function of the frequency of the perturbations. Based on a minimal theory of sensory processing, we argue that this peak is set to maximize information transmission. Our approach is relevant to testing the efficient coding hypothesis locally in any context where no reliable encoding model is known

    Semiclassical and spectral analysis of oceanic waves

    Full text link
    In this work we prove that the shallow water flow, subject to strong wind forcing and linearized around an adequate stationary profile, develops for large times closed trajectories due to the propagation of Rossby waves, while Poincar\'e waves are shown to disperse. The methods used in this paper involve semi-classical analysis and dynamical systems for the study of Rossby waves, while some refined spectral analysis is required for the study of Poincar\'e waves, due to the large time scale involved which is of diffractive type
    corecore