7,064 research outputs found
Quasi-optimal robust stabilization of control systems
In this paper, we investigate the problem of semi-global minimal time robust
stabilization of analytic control systems with controls entering linearly, by
means of a hybrid state feedback law. It is shown that, in the absence of
minimal time singular trajectories, the solutions of the closed-loop system
converge to the origin in quasi minimal time (for a given bound on the
controller) with a robustness property with respect to small measurement noise,
external disturbances and actuator noise
Intermittency and transition to chaos in the cubical lid-driven cavity flow
Transition from steady state to intermittent chaos in the cubical lid-driven
flow is investigated numerically. Fully three-dimensional stability analyses
have revealed that the flow experiences an Andronov-Poincar\'e-Hopf bifurcation
at a critical Reynolds number = 1914. As for the 2D-periodic lid-driven
cavity flows, the unstable mode originates from a centrifugal instability of
the primary vortex core. A Reynolds-Orr analysis reveals that the unstable
perturbation relies on a combination of the lift-up and anti lift-up mechanisms
to extract its energy from the base flow. Once linearly unstable, direct
numerical simulations show that the flow is driven toward a primary limit cycle
before eventually exhibiting intermittent chaotic dynamics. Though only one
eigenpair of the linearized Navier-Stokes operator is unstable, the dynamics
during the intermittencies are surprisingly well characterized by one of the
stable eigenpairs.Comment: Accepted for publication in Fluid Dynamics Researc
The weight and density of carbon nanotubes versus the number of walls and diameter
The weight and density of carbon nanotubes are calculated as a function of their characteristics (inner diameter, outer diameter, and number of walls). The results are reported in the form of diagrams which may be useful to other researchers, in particular in the fields of synthesis/production, materials and composites, health/toxicity studies
A simple and versatile method for statistical analysis of the electrical properties of individual double walled carbon nanotubes
Double-walled carbon nanotubes (DWNTs) are potential candidates for new generation of on chip interconnections due to their nearly metallic behaviour. For such large scale integration purpose it is mandatory to characterize their electrical properties in a statistical way. We thus propose a new methodology for characterizing in one step, the electrical properties of a large population of nanotubes. The method enables to obtain histograms of the conductance and maximum current density of individual nanoobjects
Quality criteria benchmark for hyperspectral imagery
Hyperspectral data appear to be of a growing interest
over the past few years. However, applications for hyperspectral
data are still in their infancy as handling the significant size of
the data presents a challenge for the user community. Efficient
compression techniques are required, and lossy compression,
specifically, will have a role to play, provided its impact on remote
sensing applications remains insignificant. To assess the data
quality, suitable distortion measures relevant to end-user applications
are required. Quality criteria are also of a major interest
for the conception and development of new sensors to define their
requirements and specifications. This paper proposes a method to
evaluate quality criteria in the context of hyperspectral images.
The purpose is to provide quality criteria relevant to the impact
of degradations on several classification applications. Different
quality criteria are considered. Some are traditionnally used in
image and video coding and are adapted here to hyperspectral
images. Others are specific to hyperspectral data.We also propose
the adaptation of two advanced criteria in the presence of different
simulated degradations on AVIRIS hyperspectral images. Finally,
five criteria are selected to give an accurate representation of the
nature and the level of the degradation affecting hyperspectral
data
Hyperspectral image compression : adapting SPIHT and EZW to Anisotropic 3-D Wavelet Coding
Hyperspectral images present some specific characteristics that should be used by an efficient compression system. In compression, wavelets have shown a good adaptability to a wide range of data, while being of reasonable complexity. Some wavelet-based compression algorithms have been successfully used for some hyperspectral space missions. This paper focuses on the optimization of a full wavelet compression system for hyperspectral images. Each step of the compression algorithm is studied and optimized. First, an algorithm to find the optimal 3-D wavelet decomposition in a rate-distortion sense is defined. Then, it is shown that a specific fixed decomposition has almost the same performance, while being more useful in terms of complexity issues. It is shown that this decomposition significantly improves the classical isotropic decomposition. One of the most useful properties of this fixed decomposition is that it allows the use of zero tree algorithms. Various tree structures, creating a relationship between coefficients, are compared. Two efficient compression methods based on zerotree coding (EZW and SPIHT) are adapted on this near-optimal decomposition with the best tree structure found. Performances are compared with the adaptation of JPEG 2000 for hyperspectral images on six different areas presenting different statistical properties
Dual-mobility socket in challenging total hip arthroplasty : 2-6 years follow-up.
The success of dual-mobility sockets in achieving implant stability in primary hip replacement is already well established. However, stability cannot always be achieved, especially when dealing with more difficult indications.
At our department, 104 dual-mobility sockets (92 uncemented and 12 cemented) were implanted for primary total hip arthroplasty in 97 patients between 2009 and 2013. Indications for hip arthroplasty included primary and secondary coxarthrosis, acetabular and subcapital fractures, avascular necrosis, tumor surgery and metastatic fractures. Although no loosenings were observed, 2 dislocations and 1 infection occurred shortly after surgery.
In this challenging group of patients no fixation problems or intraprosthetic dislocations have been observed. The design therefore seems to be a valid alternative to constrained implants, especially in high-risk cases, although dislocation cannot be prevented at all times. Although the findings are very promising, long-term survival studies are mandatory to evaluate intraprosthetic stability and fixation longevity of dual-mobility sockets
Adaptation of Zerotrees Using Signed Binary Digit Representations for 3D Image Coding
Zerotrees of wavelet coefficients have shown a good adaptability for the compression of three-dimensional images. EZW, the original algorithm using zerotree, shows good performance and was successfully adapted to 3D image compression. This paper focuses on the adaptation of EZW for the compression of hyperspectral images. The subordinate pass is suppressed to remove the necessity to keep the significant pixels in memory. To compensate the loss due to this removal, signed binary digit representations are used to increase the efficiency of zerotrees. Contextual arithmetic coding with very limited contexts is also used. Finally, we show that this simplified version of 3D-EZW performs almost as well as the original one
- …