30 research outputs found

    Large scale genome-wide association and LDLA mapping study identifies QTLs for boar taint and related sex steroids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Boar taint is observed in a high proportion of uncastrated male pigs and is characterized by an unpleasant odor/flavor in cooked meat, primarily caused by elevated levels of androstenone and skatole. Androstenone is a steroid produced in the testis in parallel with biosynthesis of other sex steroids like testosterone and estrogens. This represents a challenge when performing selection against androstenone in breeding programs, without simultaneously decreasing levels of other steroids. The aim of this study was to use high-density genome wide association (GWA) in combination with linkage disequilibrium-linkage analysis (LDLA) to identify quantitative trait loci (QTL) associated with boar taint compounds and related sex steroids in commercial Landrace (n = 1,251) and Duroc (n = 918) breeds.</p> <p>Results</p> <p>Altogether, 14 genome wide significant (GWS) QTL regions for androstenone in subcutaneous fat were obtained from the LDLA study in Landrace and 14 GWS QTL regions in Duroc. LDLA analysis revealed that 7 of these QTL regions, located on SSC 1, 2, 3, 7 and 15, were obtained in both breeds. All 14 GWS androstenone QTLs in Landrace are also affecting the estrogens at chromosome wise significance (CWS) or GWS levels, while in Duroc, 3 of the 14 QTLs affect androstenone without affecting any of the estrogens. For skatole, 10 and 4 QTLs were GWS in the LDLA analysis for Landrace and Duroc respectively, with 4 of these detected in both breeds. The GWS QTLs for skatole obtained by LDLA are located at SSC 1, 5, 6, 7, 10, 11, 13 and 14.</p> <p>Conclusion</p> <p>This is the first report applying the Porcine 60 K SNP array for simultaneous analysis of boar taint compounds and related sex hormones, using both GWA and LDLA approaches. Several QTLs are involved in regulation of androstenone and skatole, and most of the QTLs for androstenone are also affecting the levels of estrogens. Seven QTLs for androstenone were detected in one breed and confirmed in the other, i.e. in an independent sample, although the majority of QTLs are breed specific. Most QTLs for skatole do not negatively affect other sex hormones and should be easier to implement into the breeding scheme.</p

    From Global to Local and Vice Versa: On the Importance of the 'Globalization' Agenda in Continental Groundwater Research and Policy-Making.

    Get PDF
    Groundwater is one of the most important environmental resources and its use continuously rises globally for industrial, agricultural, and drinking water supply purposes. Because of its importance, more knowledge about the volume of usable groundwater is necessary to satisfy the global demand. Due to the challenges in quantifying the volume of available global groundwater, studies which aim to assess its magnitude are limited in number. They are further restricted in scope and depth of analysis as, in most cases, they do not explain how the estimates of global groundwater resources have been obtained, what methods have been used to generate the figures and what levels of uncertainty exist. This article reviews the estimates of global groundwater resources. It finds that the level of uncertainty attached to existing numbers often exceeds 100 % and strives to establish the reasons for discrepancy. The outcome of this study outlines the need for a new agenda in water research with a more pronounced focus on groundwater. This new research agenda should aim at enhancing the quality and quantity of data provision on local and regional groundwater stocks and flows. This knowledge enhancement can serve as a basis to improve policy-making on groundwater resources globally. Research-informed policies will facilitate more effective groundwater management practices to ensure a more rapid progress of the global water sector towards the goal of sustainability

    Association and interaction of PPAR-complex gene variants with latent traits of left ventricular diastolic function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abnormalities in myocardial metabolism and/or regulatory genes have been implicated in left ventricular systolic dysfunction. However, the extent to which these modulate left ventricular diastolic function (LVDF) is uncertain.</p> <p>Methods</p> <p>Independent component analysis was applied to extract latent LVDF traits from 14 measured echocardiography-derived endophenotypes of LVDF in 403 Caucasians. Genetic association was assessed between measured and latent LVDF traits and 64 single nucleotide polymorphisms (SNPs) in three peroxisome proliferator-activated receptor <it>(PPAR)</it>-complex genes involved in the transcriptional regulation of fatty acid metabolism.</p> <p>Results</p> <p>By linear regression analysis, 7 SNPs (4 in <it>PPARA</it>, 2 in <it>PPARGC1A</it>, 1 in <it>PPARG</it>) were significantly associated with the latent LVDF trait, whereas a range of 0-4 SNPs were associated with each of the 14 measured echocardiography-derived endophenotypes. Frequency distribution of <it>P </it>values showed a greater proportion of significant associations with the latent LVDF trait than for the measured endophenotypes, suggesting that analyses of the latent trait improved detection of the genetic underpinnings of LVDF. Ridge regression was applied to investigate within-gene and gene-gene interactions. In the within-gene analysis, there were five significant pair-wise interactions in <it>PPARGC1A </it>and none in <it>PPARA </it>or <it>PPARG</it>. In the gene-gene analysis, significant interactions were found between rs4253655 in <it>PPARA </it>and rs1873532 (p = 0.02) and rs7672915 (p = 0.02), both in <it>PPARGC1A</it>, and between rs1151996 in <it>PPARG </it>and rs4697046 in <it>PPARGC1A </it>(p = 0.01).</p> <p>Conclusions</p> <p>Myocardial metabolism <it>PPAR</it>-complex genes, including within and between genes interactions, may play an important role modulating left ventricular diastolic function.</p

    Identification and characterization of a proline-rich mRNA that accumulates during pod development in oilseed rape (Brassica napus L.)

    No full text
    Pod development in oilseed rape (Brassica napus) culminates in a process known as dehiscence (shatter) which can result in the loss of seed before the crop is harvested. In order to investigate the biochemical and the genetic basis controlling this process, a cDNA library was constructed from the dehiscence zone of developing pods. This resulted in the isolation of a cDNA clone (SAC51). The mRNA encoded by SAC51 had a transcript size of ca. 700 nucleotides and was found, by northern analysis, to accumulate preferentially in the dehiscence zone of the pod and in no other part of the plant analysed. The predicted polypeptide is rich in the amino acids proline (14.2%) and leucine (14.2%). The sequence of the polypeptide has more than 40% amino acid sequence identity with polypeptides isolated from carrot embryos, maize roots, soybean seeds and young tomato fruit. The function of these proteins is unknown. Genomic Southern analysis suggests that SAC51 is encoded by a single gene or small gene family. The role of the peptide in the development of pods of oilseed rape is discussed
    corecore