213 research outputs found

    Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species

    Get PDF
    Many herbicide-resistant weed species are polyploids, but far too little about the evolution of resistance mutations in polyploids is understood. Hexaploid wild oat (Avena fatua) is a global crop weed and many populations have evolved herbicide resistance. We studied plastidic acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicide resistance in hexaploid wild oat and revealed that resistant individuals can express one, two or three different plastidic ACCase gene resistance mutations (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg). Using ACCase resistance mutations as molecular markers, combined with genetic, molecular and biochemical approaches, we found in individual resistant wild-oat plants that (1) up to three unlinked ACCase gene loci assort independently following Mendelian laws for disomic inheritance, (2) all three of these homoeologous ACCase genes were transcribed, with each able to carry its own mutation and (3) in a hexaploid background, each individual ACCase resistance mutation confers relatively low-level herbicide resistance, in contrast to high-level resistance conferred by the same mutations in unrelated diploid weed species of the Poaceae (grass) family. Low resistance conferred by individual ACCase resistance mutations is likely due to a dilution effect by susceptible ACCase expressed by homoeologs in hexaploid wild oat and/or differential expression of homoeologous ACCase gene copies. Thus, polyploidy in hexaploid wild oat may slow resistance evolution. Evidence of coexisting non-target-site resistance mechanisms among wild-oat populations was also revealed. In all, these results demonstrate that herbicide resistance and its evolution can be more complex in hexaploid wild oat than in unrelated diploid grass weeds. Our data provide a starting point for the daunting task of understanding resistance evolution in polyploids

    Evidence-Based Management of Hand Eczema

    Get PDF
    Hand eczema is a common skin disease with a wide variation in morphology and a complex etiology based on endogenous and exogenous factors.The diagnosis of hand eczema is based on patient history, exposure assessment, physical examination, and the results of patch testing. Management of hand eczema starts with education of the patient on the etiology of the disease, and the needed changes in behavior regarding skin care and preventive measures, and avoidance of relevant exposure factors. In many cases, medical treatment is needed for successful management of the disease; use of medication can only be successful with proper education and avoidance of relevant exposure

    Mechanism and Enantioselectivity in Palladium-Catalyzed Conjugate Addition of Arylboronic Acids to β‑Substituted Cyclic Enones: Insights from Computation and Experiment

    Get PDF
    Enantioselective conjugate additions of arylboronic acids to β-substituted cyclic enones have been previously reported from our laboratories. Air- and moisture-tolerant conditions were achieved with a catalyst derived in situ from palladium(II) trifluoroacetate and the chiral ligand (S)-t-BuPyOx. We now report a combined experimental and computational investigation on the mechanism, the nature of the active catalyst, the origins of the enantioselectivity, and the stereoelectronic effects of the ligand and the substrates of this transformation. Enantioselectivity is controlled primarily by steric repulsions between the t-Bu group of the chiral ligand and the α-methylene hydrogens of the enone substrate in the enantiodetermining carbopalladation step. Computations indicate that the reaction occurs via formation of a cationic arylpalladium(II) species, and subsequent carbopalladation of the enone olefin forms the key carbon–carbon bond. Studies of nonlinear effects and stoichiometric and catalytic reactions of isolated (PyOx)Pd(Ph)I complexes show that a monomeric arylpalladium–ligand complex is the active species in the selectivity-determining step. The addition of water and ammonium hexafluorophosphate synergistically increases the rate of the reaction, corroborating the hypothesis that a cationic palladium species is involved in the reaction pathway. These additives also allow the reaction to be performed at 40 °C and facilitate an expanded substrate scope

    Direct enantio-convergent transformation of racemic substrates without racemization or symmetrization

    Get PDF
    Asymmetric reactions that transform racemic mixtures into enantio-enriched products are in high demand, however, classical kinetic resolution (KR) can afford enantiopure compounds in <50% yield even in an ideal case. Many deracemization processes thus have been developed including dynamic kinetic resolution (DKR) and dynamic kinetic asymmetric transformation (DYKAT), which can provide enantio-enriched products even after complete conversion of the racemic starting materials; however, these dynamic processes require racemization or symmetrization of the substrates or intermediates. We demonstrate a first chemical direct enantio-convergent transformation without racemization or symmetrization process. The copper(I)-catalysed asymmetric allylic substitution of a racemic allyl ethers afforded a single enantiomer of an α-chiral allylboronates with complete conversion and high enantioselectivity (up to 98% ee); one enantiomer of the substrate undergoes an anti-SN2'-type reaction whereas the other enantiomer reacts via a syn-SN2' pathway. The products, α-chiral allylboronates, cannot be prepared by dynamic procedures, were used in construction of all-carbon quaternary stereocentres
    corecore