37 research outputs found

    Modeling filtering penalties in ROADM-based networks with machine learning for QoT estimation

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Monitoring 3dB bandwidth and other spectrum related parameters at ROADMs provides information about quality of their filters. We propose a machine-learning model to estimate end-to-end filtering penalty for more accurate QoT estimation of future connections.Authors would like to thank Karsten Schuh and Camille Delezoide of Nokia Bell Labs for technical discussionsonfilter modelling. This work is a part ofH2020-MSCA, ONFIRE project supported by EU, grant agreement No. 765275.Peer ReviewedPostprint (author's final draft

    Machine learning-based in-band OSNR estimation from optical spectra

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Measuring the optical signal to noise ratio (OSNR) at certain network points is essential for failure handling, for single connection but also global network optimization. Estimating OSNR is inherently difficult in dense wavelength routed networks, where connections accumulate noise over different paths and tight filters do not allow the observation of the noise level at signal sides. We propose an in-band OSNR estimation process, which relies on a machine learning (ML) method, in particular on Gaussian process (GP) or support vector machine (SVM) regression. We acquired high-resolution optical spectra, through an experimental setup, using a Brillouin optical spectrum analyzer (BOSA), on which we applied our method and obtained excellent estimation accuracy. We also verified the accuracy of this approach for various resolution scenarios. To further validate it, we generated spectral data for different configurations and resolutions through simulations. This second validation confirmed the estimation quality of the proposed approach.The authors would like to thank Aragon Photonics Labs for providing the BOSA used for the experiments. This work was partially funded by the ONFIRE project supported by EU Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 765275Peer ReviewedPostprint (author's final draft

    Quality of transmission estimator retraining for dynamic optimization in optical networks

    Get PDF
    Optical network optimization involves an algorithm and a physical layer model (PLM) to estimate the quality of transmission of connections while examining candidate optimization operations. In particular, the algorithm typically calculates intermediate solutions until it reaches the optimum, which is then configured to the network. If it uses a PLM that was aligned once to reflect the starting network configuration, then the algorithm within its intermediate calculations can project the network into states where the PLM suffers from low accuracy, resulting in a suboptimal optimization. In this paper, we propose to solve dynamic multivariable optimization problems with an iterative closed control loop process, where after certain algorithm steps we configure the intermediate solution so that we monitor and realign/retrain the PLM to follow the projected network states. The PLM is used as a digital twin, a digital representation of the real system, which is realigned during the dynamic optimization process. Specifically, we study the dynamic launch power optimization problem, where we have a set of established connections, and we optimize their launch powers while the network operates. We observed substantial improvements in the sum and the lowest margin when optimizing the launch powers with the proposed approach over optimization using a one-time trained PLM. The proposed approach achieved near-to-optimum solutions as found by optimizing and continuously probing and monitoring the network, but with a substantial lower optimization time.Funding: Horizon 2020 Framework Programme (765275). This work is a part of the Future Optical Networks for Innovation, Research and Experimentation (ONFIRE) project (https://h2020-onfire.eu/), supported by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Actions.Peer ReviewedPostprint (author's final draft

    Spectral processing techniques for efficient monitoring in optical networks

    Get PDF
    Having ubiquitous optical monitors in dense wavelength-division multiplexing (DWDM) or flex-grid networks allows the estimation in real time of crucial parameters. Such monitoring would be even more important in disaggregated optical networks, to inspect performance issues related to inter-vendor interoperability. Several important parameters can be retrieved using optical spectrum analyzers (OSAs). However, omnipresent OSAs represent an infeasible solution. Nevertheless, the advent of new, relatively cheap, compact and medium-resolution optical channel monitors (OCMs) enable a more intensive deployment of these devices. In this paper, we identify two main scenarios for the placement of such monitors: at the ingress and at the egress of the optical nodes. In the ingress scenario, we can directly estimate the parameters related to the signals, but not those related to the filters. On the contrary, in the egress scenario, the filter-related parameters can be easily detected, but not those related to amplified spontaneous emission. Therefore, we present two methods that, leveraging a curve fitting and a machine learning regression algorithm, allow detection of the missing parameters. We verify the proposed solutions with spectral data acquired in simulation and experimental setups. We obtained good estimation accuracy for both setups and for both studied placement scenarios. It is noteworthy that in the experimental assessment of the ingress scenario, we achieved a maximum absolute error (MAE) lower than 1 GHz in filter bandwidth estimation and a MAE lower than 0.5 GHz in filter frequency shift estimation. In addition, by comparing the relative errors of the considered parameters, we identified the ingress scenario as the more beneficial. In particular, we estimated the filter central frequency shift with 84% and the filter 6 dB bandwidth with 75% higher accuracy, with respect to datasheet/reference values. This translates into a total reduction of the estimated signal-to-noise ratio (SNR) penalty, introduced by a single optical filter, of 0.24 dB.Funding: Horizon 2020 Framework Programme (765275). This work is part of the Future Optical Networks for Innovation, Research and Experimentation (ONFIRE) project (https://h2020-onfire.eu), which is supported by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Action.Peer ReviewedPostprint (author's final draft

    Feedback-Based Channel Frequency Optimization in Superchannels

    Full text link
    Superchannels leverage the flexibility of elastic optical networks and pave the way to higher capacity channels in space division multiplexing (SDM) networks. A superchannel consists of subchannels to which continuous spectral grid slots are assigned. To guarantee superchannel operation, we need to account for soft failures, e.g., laser drifts causing interference between subchannels, wavelength-dependent performance variations, and filter misalignments affecting the edge subchannels. This is achieved by reserving spectral guardband between subchannels or by employing a lower modulation format. We propose a process that dynamically retunes the subchannel transmitter (TX) lasers to compensate for soft failures during operation and optimizes the total capacity or the minimum subchannel quality of transmission (QoT) performance. We use an iterative stochastic subgradient method that at each iteration probes the network and leverages monitoring information, particularly subchannels signal-to-noise ratio (SNR) values, to optimize the TX frequencies. Our results indicate that our proposed method always approaches the optima found with an exhaustive search technique, unsuitable for operating networks, irrespective of the subchannel number, modulation format, roll-off factor, filters bandwidth, and starting frequencies. Considering a four-subchannel superchannel, the proposed method achieves 2.47 dB and 3.73 dB improvements for a typical soft failure of +/- 2 GHz subchannel frequency drifts around the optimum, for the two examined objectives

    Routing and efficiency capacity assignment in optical networks

    No full text
    Optical networks have developed rapidly over the last ten years and are widely used in core networks due to their superior transmission characteristics. Optical networks provide huge available capacity that can be efficiently utilized using wavelength division multiplexing (WDM) and high reliability at the lowest cost per bit ratio when compared to the other wired and wireless networking solutions. Much research has focused on ways to evolve from the typical point-to-point opaque WDM networks that are currently employed in the core to optical networks that are dynamically and quickly reconfigurable and can provide on-demand services to users at subwavelength granularity according to users’ requirements. The most common architecture utilized for establishing communication in WDM optical networks is wavelength routing that fall in the general category of Optical Circuit Switched (OCS) networks. The switched entities in OCS networks are the lightpaths and the basic optimization problem that is related to the efficient allocation of bandwidth is the routing and wavelength assignment problem (RWA). The current optical technology employed in core networks is point-to-point transmission, where the signal is regenerated at every intermediate node via optical-electronic-optical (OEO) conversion. During the recent few years, the trend clearly shows an evolution towards low-cost and high capacity all-optical transparent networks that do not utilize OEO. In transparent OCS networks the signal of a lightpath remains in the optical domain and its quality deteriorates due to a series of physical layer impairments (PLIs). These PLIs may degrade the received signal quality to the extent that the bit-error rate (BER) at the receiver may be so high that signal detection may be infeasible for some lightpaths. To address this problem we proposed algorithms that take into account the PLIs, usually referred in the literature as Impairment Aware RWA or ΙΑ-RWA algorithms, for both offline (static) and online (dynamic) traffic. In particular we propose an IA-RWA algorithm for static traffic that is based on an LP-relaxation formulation and use various efficient methods to obtain integer solutions. The physical layer impairments are included as additional constraint in the LP formulation of the RWA problem, yielding a cross-layer optimization solution between the network and the physical layers. We then proceed and propose a multi-cost IA-RWA algorithm for dynamic traffic. We define a cost vector per link and associative operators to combine these vectors so as to calculate the cost vector of a path. The parameters of these cost vectors are chosen so as to enable the quick and efficient calculation of the quality of transmission of candidate lightpaths. To serve a connection request, the proposed multi-cost algorithm calculates the set of so called non-dominated paths from the given source to the given destination, and then applies an optimization policy to choose the optimal lightpath. We propose and evaluate various optimization policies that correspond to different online IA-RWA algorithms. We then turn our attention to Optical Burst Switched (OBS) networks, which are regarded as the next step from the OCS paradigm towards a more dynamic core network that can provide on demand subwavelength services to users. In OBS networks, the packets that have the same destination and similar quality of service requirements are aggregated into bursts at the ingress nodes. When a burst is aggregated, a control packet is transmitted and is electronically processed at intermediate nodes so as to configure them for the burst that will pass transparently afterwards. We focus on two key elements of an OBS network, and in particular the burst aggregation (or burstification) process and the signaling protocol, and we propose two solutions for the efficient allocation of bandwidth in OBS networks. We propose and evaluate a novel burst assembly algorithm that is based on the average delay of the packets that comprise a burst. We show that the proposed algorithm decreases the packet delay jitter among the packets, which is important for a number of applications, including real-time, video and audio streaming, and TCP applications. Next we propose a two-way reservation signaling protocol that utilizes in-advance and relaxed timed reservation of the bandwidth. In the connection establishment phase of the proposed protocol, bandwidth reservations can exceed the duration of burst transmission (thus, relaxing the timed reservations), so as to increase the acceptance probability for the rest of the path. By controlling the degree of the relaxed timed reservations the protocol can also provide service differentiation to the users. Next we examine the problem of routing and scheduling of connections with flexible starting time in networks that support advance reservations. This problem can arise in slightly different settings in Optical Circuit Switched, Optical Burst Switched, and Optical Packet Switched networks. Such connection requests are served through advanced reservations, a process which is used to provide quality of service to users. We assume that for a connection request we are given the source, the destination, and the size of the data to be transferred with a given rate, and we are asked to provide the path and the time that the transmission should start so as to optimize a certain performance metric. We discretize the time and we use appropriate data structures (in the form of vectors) to map the utilization of the links as a function of time. We use these vectors as cost parameters in a multi-cost algorithm. We initially present a multi-cost algorithm of non-polynomial complexity that uses a full domination relation between paths. We then propose two mechanisms to prune the solution space in order to obtain polynomial complexity algorithms. In the first mechanism we define pseudo-domination relations that are weaker than the full domination relation. We also propose a branch-and-bound extension to the optimum algorithm that can be used for a given specific optimization function. The performance of the multi-cost algorithm and its variations are evaluated in an OBS network, but this does not limit the applicability of the algorithm and the conclusions can be extended in the other optical networking paradigms. Finally, we examine the problem of joint reservation of communication and computation resources that are required by a task in a Grid Network. Grid Networks are considered as the next step in distributed systems, introducing the concept of shared usage of geographically distributed and heterogeneous resources (computation, storage, communication, etc.). We assume that the task execution consists of two phases: (a) the transfer of the input data from a data storage resource, or the scheduler to a computation resource (cluster), (b) the execution of a program at the cluster. We extend the multi-cost algorithm for the routing and scheduling of connections, outlined above, so as to handle the reservation of computation resources as its last leg. In this way the proposed algorithm performs a joint optimization for the communication and computation part required by a task and returns: (i) the cluster to the execute the task, (ii) the path to route the input data, (iii) the time to start the transmission of data, and (iv) the time to start the execution of the task. We start by presenting an algorithm of non-polynomial complexity and then by appropriately pruning the solution space, we give a heuristic algorithm of polynomial complexity. We show that in a Grid network where the tasks are cpu- and data-intensive important performance benefits can be obtained by jointly optimizing the use of the communication and computation resources.Τα οπτικά δίκτυα αποτελούν την αποδοτικότερη επιλογή όσον αφορά την εγκατάσταση ευρυζωνικών δικτύων κορμού, καθώς παρουσιάζουν μοναδικά χαρακτηριστικά μετάδοσης. Διαθέτουν τεράστιο εύρος ζώνης, υψηλή αξιοπιστία, ενώ επίσης έχουν μειωμένο κόστος μετάδοσης ανά bit πληροφορίας σε σχέση με τα υπόλοιπα ενσύρματα δίκτυα. Σημαντικές ερευνητικές προσπάθειες έχουν επικεντρωθεί στις προοπτικές μετάβασης από τα παραδοσιακά στατικά δίκτυα κυκλωμάτων, στα οποία χρησιμοποιείται από-σημείο-σε-σημείο οπτική μετάδοση, σε δίκτυα μετάδοσης δεδομένων που προσφέρουν δυναμική και γρήγορη επαναρύθμιση των οπτικών μονοπατιών και πρόσβαση σε χωρητικότητες κάτω του ενός μήκους κύματος, ανάλογα με τις απαιτήσεις των χρηστών και των εκάστοτε εφαρμογών. Τα τελευταία χρόνια υπάρχει η τάση για δημιουργία δυναμικών και επαναρυθμιζόμενων οπτικών δικτύων μεταγωγής κυκλώματος (Optical Circuit Switching), τα οποία θα βασίζονται σε διαφανείς κόμβους μεταγωγής. Η μονάδα μεταγωγής των δικτύων οπτικής μεταγωγής κυκλώματος είναι τα οπτικά μονοπάτια (lightpaths) και το βασικό πρόβλημα βελτιστοποίησης που σχετίζεται με την αποδοτική εκμετάλλευση της χωρητικότητας τέτοιων δικτύων είναι το πρόβλημα της δρομολόγησης και ανάθεσης μήκους κύματος (Routing and Wavelength Assignment - RWA). Στα αμιγώς διαφανή (transparent) οπτικά δίκτυα κυκλώματος η μετάδοση του σήματος υποβαθμίζεται από μια σειρά φυσικών εξασθενήσεων (physical impairments), σε σημείο που η εγκατάσταση ενός οπτικού μονοπατιού να μην είναι αποδεκτή. Για την αντιμετώπιση αυτού του προβλήματος στην παρούσα διατριβή προτείνουμε αλγόριθμους οι οποίοι λαμβάνουν υπόψη τους τις φυσικές εξασθενήσεις (Impairment Aware RWA ή ΙΑ-RWA algorithms) τόσο για στατική όσο και για δυναμική κίνηση. Συγκεκριμένα, παρουσιάζουμε έναν IA-RWA αλγόριθμο για στατική κίνηση, ο οποίος βασίζεται στην τεχνική της LP-χαλάρωσης και χρησιμοποιεί αποδοτικές μεθόδους για την παραγωγή ακεραίων λύσεων. Εκφράζουμε τις φυσικές εξασθενήσεις μέσω επιπλέον περιορισμών στην LP μοντελοποίηση του RWA προβλήματος, επιτυγχάνοντας την διαστρωματική βελτιστοποίηση (cross-layer optimization) πάνω στο φυσικό επίπεδο και στο επίπεδο δικτύου. Στη συνέχεια, προτείνουμε έναν IA-RWA αλγόριθμο πολλαπλών κριτηρίων (multi-cost) για δυναμική κίνηση. Ορίζουμε ένα διάνυσμα από κόστη για κάθε σύνδεσμο και τις πράξεις συσχέτισης αυτών, ώστε να μπορούμε να υπολογίσουμε το διάνυσμα από κόστη ενός μονοπατιού και μέσω αυτού να αξιολογήσουμε την ποιότητα μετάδοσης των διαθέσιμων μηκών κύματος του μονοπατιού. Για την εξυπηρέτηση μιας νέας αίτησης σύνδεσης, ο αλγόριθμος πολλαπλών κριτηρίων υπολογίζει το σύνολο των μη κυριαρχούμενων μονοπατιών, από την πηγή στο ζητούμενο προορισμό, και μετά εφαρμόζει μια πολιτική για να επιλέξει το βέλτιστο οπτικό μονοπάτι. Προτείνουμε και αξιολογούμε την απόδοση μιας σειράς από πολιτικές επιλογής, η κάθε μια από τις οποίες ουσιαστικά αντιστοιχεί σε έναν διαφορετικό δυναμικό IA-RWA αλγόριθμο. Στη συνέχεια, στρέφουμε την προσοχή μας στα δίκτυα οπτικής μεταγωγής καταιγισμών (Optical Burst Switching – OBS), τα οποία θεωρούνται ότι αποτελούν το επόμενο στάδιο των δικτύων οπτικής μεταγωγής κυκλώματος, όπου η δέσμευση της χωρητικότητας γίνεται για μικρότερο χρονικό διάστημα. Στα OBS δίκτυα, τα πακέτα που έχουν τον ίδιο προορισμό και παρόμοιες απαιτήσεις ποιότητας υπηρεσίας συναθροίζονται σε καταιγισμούς (bursts). Οι καταιγισμοί μεταδίδονται πάνω από αμιγώς οπτικά μονοπάτια, τα οποία ρυθμίζονται με τη χρήση πακέτων ελέγχου που μεταδίδονται πριν από τους αντίστοιχους καταιγισμούς και τα οποία επεξεργάζονται ηλεκτρονικά οι ενδιάμεσοι κόμβοι. Επικεντρώνουμε την προσοχή μας σε δυο βασικά στοιχεία ενός δικτύου οπτικής μεταγωγής καταιγισμών, την διαδικασία συναρμολόγησης καταιγισμών και τα πρωτόκολλα σηματοδοσίας, και παραθέτουμε δύο προτάσεις για την αποδοτική ανάθεσης χωρητικότητας σε αυτά τα δίκτυα. Συγκεκριμένα, προτείνουμε και αξιολογούμε ένα νέο αλγόριθμο συναρμολόγησης καταιγισμών που βασίζεται στη μέση καθυστέρηση των πακέτων που αποτελούν έναν καταιγισμό. Δείχνουμε ότι ο προτεινόμενος αλγόριθμος συναρμολόγησης καταιγισμών μειώνει την διασπορά της καθυστέρησης των πακέτων (packet delay jitter), η οποία είναι σημαντική για μια σειρά από εφαρμογές. Στην συνέχεια προτείνουμε ένα νέο αμφίδρομο (two-way) πρωτόκολλο σηματοδοσίας που βασίζεται στις μελλοντικές (in-advance) και χαλαρωμένες χρονικά (relaxed timed) δεσμεύσεις χωρητικότητας. Στο προτεινόμενο πρωτόκολλο, κατά τη φάση εγκατάστασης της σύνδεσης οι δεσμεύσεις χωρητικότητας γίνονται για χρονικό διάστημα μεγαλύτερο από το χρόνο μετάδοσης του καταιγισμού, ώστε να αυξηθεί η πιθανότητα επιτυχούς εγκατάστασης στους επόμενους συνδέσμους του μονοπατιού. Συγκρίνουμε το προτεινόμενο πρωτόκολλο με τυπικά πρωτόκολλα που έχουν προταθεί στη βιβλιογραφία και δείχνουμε οτι μπορεί να χρησιμοποιηθεί για την παροχή διαφοροποιημένης ποιότητα υπηρεσιών (QoS differentiation) στους χρήστες του OBS δικτύου. Στη συνέχεια, εξετάζουμε το πρόβλημα της δρομολόγησης και του χρονοπρογραμματισμού συνδέσεων με χαλαρό - μη συγκεκριμένο χρόνο εκκίνησης, πρόβλημα που εμφανίζεται υπό ελαφρώς διαφορετική μορφή σε δίκτυα οπτικής μεταγωγής κυκλώματος, οπτικής μεταγωγής καταιγισμών αλλά και μεταγωγής πακέτου. Η εξυπηρέτηση αυτών των συνδέσεων γίνεται μέσω μελλοντικών δεσμεύσεων χωρητικότητας, τρόπος ο οποίος είναι τυπικός για να παραχθεί εγγυημένη ποιότητα υπηρεσίας (QoS) στους χρήστες ενός δικτύου. Θεωρούμε ότι μας δίνεται μια σύνδεση με γνωστή πηγή και προορισμό, γνωστό ή άγνωστο όγκο δεδομένων και γνωστό ρυθμό μετάδοσης και ζητείται να αποφασίσουμε το μονοπάτι που θα ακολουθήσουν τα δεδομένα και το χρόνο που θα αρχίσει η μετάδοση. Διακριτοποιούμε το χρόνο και χρησιμοποιούμε κατάλληλα διανύσματα ως δομές δεδομένων για να αναπαραστήσουμε τη διαθεσιμότητα των συνδέσμων του δικτύου ως συνάρτηση του χρόνου. Χρησιμοποιούμε αυτά τα διανύσματα σε ένα αλγόριθμο πολλαπλών κριτηρίων για τη δρομολόγηση και το χρονοπρογραμματισμό των συνδέσεων. Αρχικά, παρουσιάζουμε έναν αλγόριθμο πολλαπλών κριτηρίων μη πολυωνυμικής πολυπλοκότητας, ο οποίος βασίζεται στην έννοια των μη-κυριαρχούμενων μονοπατιών. Μετά προτείνουμε δύο ευριστικούς αλγορίθμους πολυωνυμικής πολυπλοκότητας, ορίζοντας κατάλληλες σχέσεις ψευδο-κυριαρχίας οι οποίες μειώνουν το χώρο των λύσεων. Επίσης, προτείνουμε ένα μηχανισμό branch-and-bound, ο οποίος μπορεί να μειώσει το χώρο λύσεων στην περίπτωση που χρησιμοποιούμε μια συγκεκριμένη συνάρτηση βελτιστοποίησης για όλες τις συνδέσεις. Η απόδοση των προτεινόμενων αλγορίθμων αξιολογήθηκε σε ένα δίκτυο οπτικής μεταγωγής καταιγισμών, ωστόσο τα συμπεράσματα και η εφαρμοσιμότητα του προτεινόμενου αλγόριθμου επεκτείνεται και σε άλλου είδους οπτικά δίκτυα. Τέλος, εξετάζουμε το πρόβλημα του συνδυασμένου χρονοπρογραμματισμού των δικτυακών και υπολογιστικών πόρων που απαιτούνται για την εκτέλεση μιας διεργασίας σε ένα Δίκτυο Πλέγματος (Grid Network). Τα Δίκτυα Πλέγματος θεωρούνται το επόμενο βήμα στον τομέα των κατανεμημένων συστημάτων, εισάγοντας την έννοια της “κοινής” χρήσης γεωγραφικά κατανεμημένων και ετερογενών πόρων (υπολογιστικών, αποθηκευτικών, δικτυακών, κλπ.). Υποθέτουμε ότι η εκτέλεση μιας διεργασίας αποτελείται από δύο διαδοχικά στάδια: (α) Τη μεταφορά των δεδομένων εισόδου της διεργασίας από μια αποθηκευτική μονάδα σε μια συστοιχία υπολογιστών (cluster), (β) την εκτέλεση της διεργασίας στη συστοιχία υπολογιστών. Επεκτείνουμε τον αλγόριθμο πολλαπλών κριτηρίων για τη δρομολόγηση και το χρονοπρογραμματισμό συνδέσεων που περιγράφηκε προηγουμένως, έτσι ώστε να χειρίζεται με ένα συνδυασμένο τρόπο δικτυακούς και υπολογιστικούς πόρους για την εκτέλεση των διεργασιών. Ο προτεινόμενος αλγόριθμος επιστρέφει: (i) τη συστοιχία υπολογιστών όπου θα εκτελεστεί η διεργασία, (ii) το μονοπάτι το οποίο θα ακολουθήσουν τα δεδομένα εισόδου, (iii) τη χρονική στιγμή εκκίνησης μετάδοσης και (iv) τη χρονική στιγμή εκκίνησης εκτέλεσης της διεργασίας στη συστοιχία υπολογιστών. Ξεκινάμε παρουσιάζοντας έναν αλγόριθμο μη πολυωνυμικού χρόνου και μετά, αφού μειώσουμε κατάλληλα το χώρο λύσεων, δίνουμε έναν ευριστικό αλγόριθμο πολυωνυμικής πολυπλοκότητας

    Resource partitioning in the NEPHELE datacentre interconnect

    No full text
    We present heuristic algorithms for the efficient resource partitioning in the NEPHELE datacentre optical interconnect. The algorithms aim to segment the network into smaller and isolated virtual datacentres (VDCs), where all racks are able to communicate at full capacity irrespective of their placement. Since the NEPHELE architecture relies on shared optical rings, the isolation of VDC traffic is challenging. Observing its close resemblance to finding a bi-clique on a bipartite graph, which is NP-hard, we propose heuristic algorithms which find a solution by limiting either the spatial spread of racks that construct each VDC or their wavelength allocation. If a solution cannot be found, then the algorithms invoke a second de-fragmentation phase, where they re-allocate the racks of existing VDCs to concentrate them spatially and reduce traffic on the shared optical rings. It is demonstrated via simulation that the proposed heuristics can achieve very high utilization and also exhibit low VDC request blocking probability for typically expected VDC sizes

    Improving QoT estimation accuracy with DGE monitoring using machine learning

    No full text
    In optical transport networks, Dynamic Gain Equalizers (DGE) are typically used at each link. A DGE selectively attenuates the channels to compensate the cumulative Erbium Doped Fiber Amplifier (EDFA) gain ripple effect on the multi-span link, resulting in almost flat output power at the end of the link. We leverage monitored per link DGE attenuation profiles and coherent receivers Signal to Noise Ratio (SNR) information, and propose a machine learning (ML) based scheme to estimate the EDFA gain ripple penalties for new connections. Using that in realistic simulation scenarios we observed a design margin reduction from ~1dB to ~0.3dBs.This work is a part of Future Optical Networks for Innovation, Research andExperimentation, ONFIRE project supported by European Union’s fundedHorizon 2020 research and innovation programme under the MarieSkłodowska-Curie grant agreement No. 765275.Peer ReviewedPostprint (author's final draft
    corecore