77 research outputs found

    NDE detectability of fatigue-type cracks in high-strength alloys: NDI reliability assessments

    Get PDF
    This program was conducted to generate quantitative flaw detection capability data for the nondestructive evaluation (NDE) techniques typically practiced by aerospace contractors. Inconel 718 and Haynes 188 alloy test specimens containing fatigue flaws with a wide distribution of sizes were used to assess the flaw detection capabilities at a number of contractor and government facilities. During this program 85 inspection sequences were completed presenting a total of 20,994 fatigue cracks to 53 different inspectors. The inspection sequences completed included 78 liquid penetrant, 4 eddy current, and 3 ultrasonic evaluations. The results of the assessment inspections are presented and discussed. In generating the flaw detection capability data base, procedures for data collection, data analysis, and specimen care and maintenance were developed, demonstrated, and validated. The data collection procedures and methods that evolved during this program for the measurement of flaw detection capabilities and the effects of inspection variables on performance are discussed. The Inconel 718 and Haynes 188 test specimens that were used in conducting this program and the NDE assessment procedures that were demonstrated, provide NASA with the capability to accurately assess the flaw detection capabilities of specific inspection procedures being applied or proposed for use on current and future fracture control hardware program

    Expression and Partial Characterization of an Ice-Binding Protein from a Bacterium Isolated at a Depth of 3,519 m in the Vostok Ice Core, Antarctica

    Get PDF
    Cryopreservation of microorganisms in ancient glacial ice is possible if lethal levels of macromolecular damage are not incurred and cellular integrity is not compromised via intracellular ice formation or recrystallization. Previously, a bacterium (isolate 3519-10) recovered from a depth of 3,519 m below the surface in the Vostok ice core was shown to secrete an ice-binding protein (IBP) that inhibits the recrystallization of ice. To explore the advantage that IBPs confer to ice-entrapped cells, experiments were designed to examine the expression of 3519-10’s IBP gene and protein at different temperatures, assess the effect of the IBP on bacterial viability in ice, and determine how the IBP influences the physical structure of the ice. Total RNA isolated from cultures grown between 4 and 25°C and analyzed by reverse transcription-PCR indicated constitutive expression of the IBP gene. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of 3519-10’s extracellular proteins revealed a polypeptide of the predicted size of the 54-kDa IBP at all temperatures tested. In the presence of 100 μg mL−1 of extracellular protein from 3519-10, the survival of Escherichia coli was increased by greater than 100-fold after 5 freeze-thaw cycles. Microscopic analysis of ice formed in the presence of the IBP indicated that per square millimeter field of view, there were ~5 times as many crystals as in ice formed in the presence of washed 3519-10 cells and non-IBP producing bacteria, and ~10 times as many crystals as in filtered deionized water. Presumably, the effect that the IBP has on bacterial viability and ice crystal structure is due to its activity as an inhibitor of ice recrystallization. A myriad of molecular adaptations are likely to play a role in bacterial persistence under frozen conditions, but the ability of 3519-10’s IBP to control ice crystal structure, and thus the liquid vein network within the ice, may provide one explanation for its successful survival deep within the Antarctic ice sheet for thousands of years

    Assessing the Learning Environment at the University of Michigan Medical School Through a National Collaboration

    Full text link
    The Learning Environment Study involves 28 medical schools belonging to the Innovative Strategies for Transforming the Education of Physicians (ISTEP): an initiative founded by the American Medical Association in 2006. ISTEP is a unique medical education research collaborative that brings together individuals and institutions across the continuum of student/physician learning with a mission to foster evidence-based changes in physician education that will improve patient care. In early 2010, ISTEP developed a protocol to examine the undergraduate medical education environment: a prospective, repeated measures, longitudinal research design, employing a diverse set of established measures. The class of 2014 became the first cohort enrolled in this study, with 11 schools participating. A second cohort from the class of 2015 became the second cohort with 25 schools participating. The results reported here summarize the University of Michigan Medical School data for student empathy, patient-provider orientation, ways of coping, tolerance for ambiguity, and their perceptions of the learning environment at UMMS.http://deepblue.lib.umich.edu/bitstream/2027.42/91290/1/poster1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/91290/3/MEDI01poster.pd

    Physiological Ecology of Microorgansisms in Subglacial Lake Whillans

    Get PDF
    Subglacial microbial habitats are widespread in glaciated regions of our planet. Some of these environments have been isolated from the atmosphere and from sunlight for many thousands of years. Consequently, ecosystem processes must rely on energy gained from the oxidation of inorganic substrates or detrital organic matter. Subglacial Lake Whillans (SLW) is one of more than 400 subglacial lakes known to exist under the Antarctic ice sheet; however, little is known about microbial physiology and energetics in these systems. When it was sampled through its 800 m thick ice cover in 2013, the SLW water column was shallow (~2 m deep), oxygenated, and possessed sufficient concentrations of C, N, and P substrates to support microbial growth. Here, we use a combination of physiological assays and models to assess the energetics of microbial life in SLW. In general, SLW microorganisms grew slowly in this energy-limited environment. Heterotrophic cellular carbon turnover times, calculated from 3H-thymidine and 3H-leucine incorporation rates, were long (60 to 500 days) while cellular doubling times averaged 196 days. Inferred growth rates (average ~0.006 d-1) obtained from the same incubations were at least an order of magnitude lower than those measured in Antarctic surface lakes and oligotrophic areas of the ocean. Low growth efficiency (8%) indicated that heterotrophic populations in SLW partition a majority of their carbon demand to cellular maintenance rather than growth. Chemoautotrophic CO2-fixation exceeded heterotrophic organic C-demand by a factor of ~1.5. Aerobic respiratory activity associated with heterotrophic and chemoautotrophic metabolism surpassed the estimated supply of oxygen to SLW, implying that microbial activity could deplete the oxygenated waters, resulting in anoxia. We used thermodynamic calculations to examine the biogeochemical and energetic consequences of environmentally imposed switching between aerobic and anaerobic metabolisms in the SLW water column. Heterotrophic metabolisms utilizing acetate and formate as electron donors yielded less energy than chemolithotrophic metabolisms when calculated in terms of energy density, which supports experimental results that showed chemoautotrophic activity in excess of heterotrophic activity. The microbial communities of subglacial lake ecosystems provide important natural laboratories to study the physiological and biogeochemical behavior of microorganisms inhabiting cold, dark environments

    Environmentally clean access to Antarctic subglacial aquatic environments

    Get PDF
    Subglacial Antarctic aquatic environments are important targets for scientific exploration due to the unique ecosystems they support and their sediments containing palaeoenvironmental records. Directly accessing these environments while preventing forward contamination and demonstrating that it has not been introduced is logistically challenging. The Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project designed, tested and implemented a microbiologically and chemically clean method of hot-water drilling that was subsequently used to access subglacial aquatic environments. We report microbiological and biogeochemical data collected from the drilling system and underlying water columns during sub-ice explorations beneath the McMurdo and Ross ice shelves and Whillans Ice Stream. Our method reduced microbial concentrations in the drill water to values three orders of magnitude lower than those observed in Whillans Subglacial Lake. Furthermore, the water chemistry and composition of microorganisms in the drill water were distinct from those in the subglacial water cavities. The submicron filtration and ultraviolet irradiation of the water provided drilling conditions that satisfied environmental recommendations made for such activities by national and international committees. Our approach to minimizing forward chemical and microbiological contamination serves as a prototype for future efforts to access subglacial aquatic environments beneath glaciers and ice sheets
    corecore