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ABSTRACT

&

I

MOLECULAR EVOLUTION OF THE DISSIMILATORY NITRATE REDUCTASE:
A SURVEY TO ASSESS ITS DIVERSITY

Christner, Brent Craig
University of Dayton, 1995

Advisor: Dr. John J. Rowe

The narG gene, which codes for the a subunit of Escherichia coli's dissimilatory

nitrate reductase (NR), was utilized to construct two DNA probes which were subsequently 

used in a survey of nitrate-reducing bacteria. Both of these probes had previously been 

reported to share homology with the genomic DNA of prominent denitrifiers such as 

Pseudomonas aeruginosa and P. stutzeri. Of the 15 species surveyed which contain a 

respiratory NR (or enzyme analogous to typical dissimilatory NRs), 9 demonstrated 

homology with the probes (6 different genera). The NR enzyme appears to be genetically 

diverse like other NOX reductases that have been characterized. These molecular probes 

have also identified a second narG-\ike gene in some organisms, several of which are 

known to contain forms of NR which appear to have no physiological function. The 

current survey suggests that narG gene is distributed over a wide variety of nitrate-reducing 

bacteria, thus implicating its potential use in conjunction with other genetic probes to assess 

environmental samples.
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INTRODUCTION

Our global ecosystem depends on the metabolic activity of microorganisms.

Bacteria are responsible for the geochemical recycling of important biological constituents 

like carbon, nitrogen and sulfur. As Carl Woese has said, “In a fundamental sense, the 

biosphere is the bacterio-sphere” (93). Because of their role in the natural order of things, 

it is important to understand the metabolic processes carried out by these environmentally 

significant life forms. In the past, an accurate assessment of microbial diversity was not 

possible. Often, ecological studies were limited to organisms which could be grown in the 

laboratory. These enrichment techniques not only disrupt natural community balances, but 

they also inadequately represent the diversity which exists in a bacterial population. 

Consequently, much of what is known about the prokaryotes is a result of scientific 

investigations which have narrowly focused on a small group of culturable organisms.

Molecular biology has permeated every domain of the life sciences, but perhaps no 

two fields have been impacted more than microbial ecology and evolution. Before the 

advent of current molecular approaches, prokaryotic classification was based on superficial 

characteristics such as morphology and physiology. These classification bases presented 

problems to both the microbial ecologist and evolutionist: no concrete method to establish 

relationships among microorganisms. Nucleic acid sequence analysis has provided a basis 

to establish a substantial evolutionary framework. As a result, a correct genealogical 

perspective concerning these organisms, their evolution and ecological diversity has been 

made possible. The current molecular techniques also allow bacteria to be detected without 

laboratory enrichment, thus giving microbial ecologists the potential to identify and study 

all species in a given ecological niche. Tracking an organism (or group of organisms) is as 

simple as finding a molecular probe which selectively identifies a particular genotype.
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Denitrification is an anaerobic respiratory pathway by which many microorganisms 

supplement the low energy yields of glycolysis in the absence of oxygen. Oxidized 

nitrogen, in the form of nitrate or nitrite (NO 3/NO 2), is utilized as a terminal electron 

acceptor and is incremently reduced to nitrogen gas (N2) in a process that is similar but 

substantially more complex than aerobic respiration. A second form of nitrate respiration 

exists where nitrate is reduced to nitrite (NO 2) which is subsequently excreted or 

assimilated into biomass. These interesting bioenergetic pathways have vital environmental 

consequences in that they are collectively responsible for the recycling of fixed nitrogen to 

N2 on the Earth’s surface, i.e. the last step of the nitrogen cycle. Techniques that determine 

the distribution of bacteria capable of nitrate respiration are critical in developing a 

rudimentary understanding about this important form of metabolism.

The purpose of this study was to develop molecular probes to determine the genetic 

diversity of nitrate reductases (NR). Gene probes have been constructed from a known 

nitrate reduction gene and used to determine homology with several NR-containing bacteria 

(55). This data suggest that this gene sequence is relatively conserved in some organisms, 

however there may be totally different genetic forms in existence. These NR-specific 

probes will be subsequently used in combination with existing gene probes derived from 

known denitrifier genes to better understand the evolution and ecological distribution of 

microorganisms capable of nitrate respiration.
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CHAPTER 1

LITERATURE REVIEW
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NITRATE METABOLISM IN PROKARYOTES 

Assimilatory and Dissimilatory Nitrate Reduction

The largest reservoir of nitrogen, dinitrogen (N2), is a gas in the atmosphere. The 

flux of this element between the atmosphere and the Earth’s surface is primarily controlled 

by bacteria and the activity of man. Fixed (organic) nitrogen is utilized by bacterial cells to 

form important molecules like proteins, nucleic acids, phospholipids, and structurally 

significant carbohydrates such as N-acetylmuramic acid and N-acetylglucosamine. The 

cycle begins with the biological or synthetic fixation of nitrogen and ends with the 

biological reduction of oxidized nitrogen compounds to dinitrogen (12). Nitrate (NOf) is 

the most common form of fixed nitrogen on the Earth’s surface. Microbial reduction of 

nitrate can be separated into two categories: assimilatory and dissimilatory.

Most bacteria can utilize the ammonium ion (NH4+) as an inorganic nitrogen source. 

Some have evolved pathways to reduce nitrate to nitrite (NO2 ) via an assimilatory nitrate 

reductase (ANR or NR B) and then to the ammonium ion by an assimilatory nitrite 

reductase (56). This type of nitrate metabolism is not restricted to prokaryotes and can be 

found in all plants and some fungi. The enzymes of this system are soluble, expressed 

under aerobic and anaerobic conditions, and inhibited by ammonia (58).

The first anaerobically respiring organisms would have gained a powerful 

bioenergetic advantage over their anaerobically fermenting counterparts. Cells 

supplementing the low energy yields of fermentative metabolism with ATP from respiration 

quickly dominated the ecosystems they evolved in. Recent theories on the evolution of 

respiration imply that it evolved in an anaerobic environment (46,69). Anaerobic 

respiration occurs only in bacteria and is much like its aerobic counterpart. Instead of 

oxygen as the terminal electron acceptor, another inorganic compound is reduced. Nitrate 

respiration has been studied more than any other form of anaerobic respiration. There are 

two primary models of dissimilatoiy nitrate reduction. The first is found in organisms such
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as Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. These bacteria reduce 

nitrate to nitrite via a membrane-bound dissimilatory nitrate reductase (DNR or NR). The 

nitrite either accumulates or can be reduced further to ammonium by one of the two forms 

of nitrite reductase (67,79). The second model, termed denitrification, is found in obligate 

respiratory bacteria such as Paracoccus denitrificans, Pseudomonas stutzeri, and P. 

aeruginosa and is physiologically very different from the E. coli type of nitrate respiration. 

In denitrification, four reactions catalyzed by four different membrane-bound enzymes are 

responsible for the reduction of nitrate to dinitrogen:

NO3 —> NO2 —> NO —> N2O —> N2 

The first enzyme, nitrate reductase (NR), reduces nitrate to nitrite. Next, nitrite is reduced 

to nitric oxide (NO) by the nitrite reductase (NiR). It is this reaction that distinguishes 

denitrifiers from nitrate respirers. Nitric oxide reductase (NOR) catalyzes the reduction of 

nitric oxide to nitrous oxide (N2O). Finally, nitrous oxide reductase (NOS) converts 

nitrous oxide to dinitrogen (29).

Denitrification has received much attention because of its agricultural and 

environmental consequences. It is responsible for the removal of fixed nitrogen from soil 

and water. In agroecosystems, denitrification diminishes agricultural productivity by 

nitrogen limitation. Waste-water treatment facilities use these organisms as a nitrogen 

pollution buffer. This process is also responsible for the generation of nitrous oxide which 

has been implicated as an ozone depleting compound and is considered an important 

greenhouse gas. Lastly, denitrification is the final step of the nitrogen cycle (59).

Dissimilatory Nitrate Reductase of Escherichia coli

Preliminary genetic and physiological investigations done on both models of nitrate 

respiration suggest that regardless of the end product, the enzyme which reduces nitrate to 

nitrite appears to be relatively the same. They both are involved in an anaerobic respiratory
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function, contain iron, labile sulfide, and molybdenum in the form of a Mo-cofactor 

(29,59,79). However, no molecular biological data exists which confirms or refutes this 

presumed conserved nature among a wide variety of bacteria. As a result, much of what is 

known about this enzyme is based on information revealed from scientific investigations of 

E. coli's NR The NR enzyme complex of E. coli is coded by the narGHJI operon and has 

been cloned and sequenced (9,75). This operon is 7 kb and is transcribed with the order 

narG-H-J-I. The four subunit enzyme is oriented such that the active site faces the 

cytoplasm. The a subunit, encoded by narG, contains molybdenum in the form of a Mo-

cofactor and is the site for nitrate reduction. Mo-cofactor is noncovalently bound to the

protein and its function is that of a prosthetic group. Even though the exact role of the |3

subunit (narH) is not known, it is believed to mediate interactions between the subunits, be 

involved with membrane association, and may have a role in electron transfer to the

catalytic site (9). The y subunit (narl), recognized as cyt b, is tightly associated with the

other two and appears to act as an immediate physiological donor of electrons to the ex

subunit. The 6 subunits (narj) function is not known, however it is believed to mediate the

formation of an active complex by allowing for subunit interactions (75).

The enzymes and membrane proteins involved in nitrate respiration are synthesized

at their highest levels in the presence of nitrate, under anaerobic conditions (32,36,61,79). 

In E. coli, the narGHJI operon and narK, a gene upstream of the operon which encodes a 

nitrite extrusion system (67), are regulated in different ways by the DNA-binding proteins 

NarL and FNR (36,79,80). NarL is the response regulator of a two-component system 

which activates the NR operon in the presence of nitrate and represses other anaerobic 

respiratory pathways (32,80). Two membrane-associated sensor proteins (histidine 

kinases), NarX and NarQ, are controlled by different promoters and respond to external 

concentrations of nitrate (61). Both sensors act separately to carry regulatory functions,
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but not to the same degree (36). Oxygen regulates nitrate respiration at two levels:i
transcriptional (fnr) and post-translational. FNR is a positive regulator responsible for the 

induction of narGHJI, frdABCD (fumarate reductase), dmsABC (dimethyl-[amine]- 

sulfoxide reductase) and narK (20,36,79). Additionally, it down regulates genes which 

encode aerobic terminal oxidases. The expression of anaerobic respiratory genes in P. 

aeruginosa is under control of a FNR-like mechanism similar to E. coli's called ANR (23). 

Oxygen is believed to inhibit at the post-translational level by competing for the electrons 

that are used to reduce nitrate via NR under anaerobic conditions and also by affecting the 

assembly of NR (19,79). Nitrate uptake and its inhibition by oxygen is still not well 

understood, however, physiological evidence supports a uniport model which couples 

transport to the reduction of nitrate (27,67).

The Evolution of Nitrate Metabolism

An understanding of the evolution of nitrogen cycling is critical to developing a 

correct perspective concerning the origin and evolution of life. The earliest organisms 

would have required mechanisms to biologically transform fixed nitrogen. Earth’s 

prebiotic reducing atmosphere was probably composed of carbon dioxide, nitrogen, 

hydrogen, methane, ammonia and water (38,46). Stanley Miller subjected mixtures of 

these compounds to spark-discharges, which simulated lightning, and analyzed the 

condensate (52). A variety of organic molecules were generated including cx-amino acids

and simple organic acids. This classical experiment led to a proposed abiotic mechanism 

for which primordial biological building blocks could have been formed. Miller 

hypothesized that hydrogen cyanide (HCN) was formed in a reaction between methane and 

ammonia. This HCN could then react with hydrocarbons produced as a result of the 

electric discharge and contribute to the formation of important amino acids such as alanine 

(38). Nitrosyl hydride (HNO) is another highly reactive product observed in these

5



prebiotic experiments that mimic the conditions of Earth’s early atmosphere (46). HNO is 

unstable and is eventually reduced to nitrate or nitrite. These reactions are believed to be 

responsible for the majority of fixed nitrogen which accumulated in the primordial soup.

As life evolved and diversified, the environment slowly changed by the chemical 

transformations made by organisms. An evolutionary sequence has been proposed for the 

appearance of biological nitrogen transformation reactions: Ammonification - 

Denitrification - Nitrification - Nitrogen fixation (46).

Aerobic terminal cytochrome oxidases are membrane-bound enzymes which reduce 

oxygen to water in the terminal step of aerobic respiration. A cytochrome oxidase from 

Bradyrhizobium japonicum (FixN) has been sequenced and identified as the most distant 

member of the heme-copper cytochrome oxidase family (69). Its high affinity for oxygen 

suggests that it may be related to a primordial cytochrome oxidase which functioned under 

microaerobic conditions. Sequence analysis between FixN and the NOR of P. stutzeri 

suggests that the former has diverged from the latter and thus challenges the dogma that 

denitrification evolved from aerobic respiration. It has been proposed that the enzymes of 

denitrification arose from those of assimilatory nitrate metabolism (46). In fact, DNA 

homology has been demonstrated between E. coli's narG and the assimilatory NR of the 

cyanobacterium Synechococcus (39). According to the current theory, aerobic respiration 

evolved from denitrification when oxygen entered the biosphere, from oxygenic 

photosynthesis, and became the preferred acceptor (46). In the words of Francois Jacob:

“In contrast to the engineer, evolution does not produce innovations from scratch.

It works on what already exists, either transforming a system to give it a new 

function or combining several systems to produce a more complex one. Natural 

selection has no analogy with any aspect of human behavior. If one wanted to use 

a comparison, however, one would have to say that this process resembles not 

engineering but tinkering, bricolage we say in French. While the engineer’s work
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relies on his having the raw materials and tools that exactly fit his project, the 

tinkerer manages with odds and ends (33).”

The early evolutionary appearance of nitrate metabolism is demonstrated by its occurrence 

in a diverse number of prokaryotes (eu- and archaebacteria) from a wide variety of 

environments (29). The complexity of its genetic organization is strong evidence against a 

lateral gene transfer theory.

Based on the evolutionary development of nitrate reduction, one would expect to 

see genetic variations in the enzymes associated with nitrate respiration and denitrification. 

For example, two different types of denitrifying NiR (nitrite reductase) have been reported 

(40,74,89). The first contains the c-d cytochrome molecule (heme-type). This enzyme was 

mistakenly identified as an aerobic terminal cytochrome oxidase because it readily reduced 

oxygen to water. A second type of NiR which contains copper has also been identified 

(40,74,89).

There is evidence from studies of Geobacter metallireducens (55) and Rhodobacter 

capsulatus (63) for a different type of NR (nitrate reductase). Southern blot analysis using 

probes derived from the narG of E. coli revealed no homology with the genome of G. 

metallireducens but did hybridize to genomic DNA of the two denitrifiers P. aeruginosa and 

P. stutzeri. Antisera to P. stutzeri's NR reacted with the NR of P. aeruginosa and E. coli, 

but not with G. metallireducens. Additional experiments revealed that the Geobacter NR 

does not possess cyt b but does contain a cyt c similar to that found in R. capsulatus (55). 

The discovery of novel NRs supports a diverse evolutionary origin. It is logical to 

presume this enzyme has the genetic variations that would be expected in any ancient 

biological system. Because of recent data suggesting that the NOX reductases may be more 

diverse than previously thought, it is important to establish their degree of variation in 

natural environments.
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MOLECULAR APPROACHES TO MICROBIAL EVOLUTION AND

ECOLOGY

Reconstructing the Molecular Evolution of Nitrate Reductase

Determining the evolutionary history of an enzyme requires a large amount of 

molecular data. Based on existing family trees, two types of genetic development have 

been observed. The genes for some enzymes appear to have very different histories but 

have evolved to perform the same function. For instance, there are three classes of alcohol 

dehydrogenase that have been characterized (34,65,91). Mammals and yeast contain a 

similar enzyme. The other types, found in prokaryotes and Drosophila, are distinct but 

have a related three-dimensional structure. Evolution in which two or more groups of 

organisms develop different mechanisms to perform the same function is termed 

convergent evolution (91). The second pattern of gene evolution is best illustrated by the 

highly conserved enzymes of glycolysis. This metabolic pathway predates respiration and 

was present in the first forms of life. The glycolytic enzymes of prokaryotes are 50% 

identical with our own (51,91). Their conserved nature implies that this system is firmly 

rooted in all organisms and any further modification would most probably not offer a 

selective advantage.

Biochemical studies of NR from a variety of bacteria have suggested a conserved 

quaternary structure for this protein. The NR from the enterics and other organisms is 

composed of an apy enzyme complex: the a subunit which averages between 104 to 150

kd and contains the molybdenum cofactor, p subunit (52 to 64 kd), and often a y subunit

(19 to 23 kd) with a fr-type cytochrome can be purified when detergents are used (29,79). 

Nitrate reduction is inhibited by oxygen, azide, thiocyanate, toluene-3,4, dithiol, cyanide 

and reduces chlorate and bromate in addition to nitrate (29). These physiological data 

strongly suggest that the NR complex is relatively the same in a diverse group of microbes.
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However, recently this conclusion has been challenged. Gorby and Lovley (1991) 

reported that the NR of G. metallireducens could use artificial electron donors and was 

inhibited by oxygen, azide and cyanide (26). Stolz et al. later demonstrated that the enzyme 

has no genetic or immunological relationship with the NR of E. coli or P. stutzeri, 

respectively (55). Therefore, physiological and biochemical similarities do not necessarily 

infer genetic relatedness.

The discovery of different forms of denitrifying enzymes raises questions about the 

origin of this pathway. Did it emanate from a common ancestor and diverge or have many 

unrelated forms evolved in parallel? The enzymes of this system were once thought to be 

highly conserved, but recent molecular evidence has challenged that belief.

The second step in denitrification, the reduction of nitrite to nitric oxide, is catalyzed 

by the dissimilatory NiR. It is this reaction that distinguishes denitrifiers from nitrate 

respirers. There are two known forms of NiR: The heme (c-d) and copper type. Probes 

have been designed from the NiR gene sequence of Alcaligenes eutrophus (40) and 

P. stutzeri (74,89). Both of these organisms contain the c-d cytochrome molecule in their 

NiR. Strains which contain the copper NiR are only weakly recognized by the heme-type 

probes. Based on the copper type’s rare occurrence, it may have evolved much later than 

the widely distributed heme enzyme (46). Gene probes have also been designed from P. 

stutzeri's nitrous oxide reductase (40). The existing probes detect viable denitrifying 

species with a 75% confidence (40) and have been useful in investigations which detect 

these organisms in environmental samples.

The discovery of a novel NR suggests that other genetic forms may be distributed 

among nitrate-reducing bacteria. It therefore becomes important to assess the diversity of 

this enzyme. One approach might involve constructing probes from a known nitrate- 

reduction gene to be used in a survey of nitrate-reducing bacteria. To date, E. coli's 

dissimilatory NR is the only one that has been cloned and sequenced (9,75). E. coli 

contains a second NR, coded by narZYWV, which is similar to the anaerobic respiratory
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enzyme except that it is expressed under aerobic conditions (10). It is believed that the two 

enzymes share a common evolutionary origin and are a result of gene duplication. A highly 

conserved domain of both narZ and narG contains a base sequence that is believed to code 

for the protein region which anchors the molybdenum cofactor to the NR complex. Probes 

derived from narG have homology with the assimilatory NR of Synechococcus (39) and 

the dissimilatory NR of P. stutzeri and P. aeruginosa (55). The p subunit (narH) is

believed to be the polypeptide involved in electron transfer. When its amino acid sequence 

was compared to other known electron transfer proteins (dimethyl sulfoxide reductase and 

formate dehydrogenase), four cysteine clusters characteristic of iron-sulfur ferredoxin 

centers were located (9). All well characterized NRs isolated thus far contain a p-type

subunit (NarH) of analogous size and apparent function. Most contain a similar y subunit

which is a specific NR b-type cytochrome. The exception to this are the cyt c-containing 

NRs of G. metallireducens and R. capsulatus. In E. coli, the NR cytochrome b is encoded 

by narl. Perhaps the narl gene is under strong selective pressure and could be used to 

specifically identify organisms with a cyt ^-containing NR (75). *

Screening a diverse group of bacteria with probes derived from the E. coli genes 

narGHJl would not only yield additional information on the genetic diversity of this 

enzyme, it would also provide preliminary data and rationale for designing other NR- 

specific probes to be used in environmental analyses. There is a critical need to develop 

techniques which accurately detect microbial denitrifiers. Much of the existing information 

about their natural distribution comes from detection methods which rely on selective 

enrichment. Such investigations have lead to ambiguous and inaccurate conclusions. For 

example, half the reports studying the effect of root proximity on denitrification conclude 

that it is enhanced, while the other half show that roots have no effect (82). It would be 

rewarding to better understand the molecular diversity of NOX reductases so that
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physiological or strain-specific probes can be customized for identifying these bacteria in
I

nature.

Identifying Microorganisms with Molecular Probes

Many techniques have been developed in an effort to detect naturally occurring 

microbial communities (66). The majority of these techniques depend on the ability of an 

organism to be cultured. However, no medium exists which can meet the variety of 

metabolic requirements needed to grow all organisms within a natural bacterial community. 

For example, a medium designed for autotrophs does not complement heterotrophs and 

methanogenic bacteria do not grow on a medium designed to count spore-formers (12). It 

has been estimated that less than 1% of the soil bacteria observed by fluorescence 

microscopy can be grown in the laboratory using a particular growth medium (84). 

Therefore, detection methods which rely on culturing bacteria from environmental samples 

greatly underestimate microbial diversity.

Recent advances in molecular biology make it possible to identify microorganisms 

and microbial activities with probes that target a gene or protein of interest. These 

techniques detect specific molecular sequences and may more accurately reflect the diversity 

which exists in a microbial niche. Molecular probes are now commercially available for the 

detection of individual or groups of bacteria. They allow rapid identification of organisms 

which are unculturable, difficult to grow, or highly contagious (25). Hence, microbial 

ecology finally possesses the necessary tools to develop a clear understanding of the natural 

relationships between microorganisms (See 93).

It has been demonstrated that common activities within a bacterial community can 

be assessed by using molecular probes. Chromosomal DNA or proteins from bacterial 

isolates can be detected with antibodies or radiolabeled DNA sequences. The high 

specificity of antibodies have made them useful in the detection of a single bacterial species
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which exists in a complex habitat such as soil or sea water (12,90). Comparative studies 

suggest that DNA probes are more generic and thus better candidates for cross-species 

reactivity (90). The main problem with this approach is constructing a probe which 

discriminates the target organism (or group of organisms) from others in its environment.

Tracking Microbes in Environmental Samples

The development of colony hybridization techniques allow large populations to be 

screened for a specific genotype (1,3,21,22,40,70,74,89). These methods complement 

phenotypic analysis, but still depend on culturing the organism. Smith and Tiedje (74) 

performed Southern hybridization with the nir probe on total DNA. Although no signal 

was detected in DNA that was directly extracted from soil and wetland sediments, the 

probes did react with DNA from enriched samples. One conclusion reached from this 

study was that laboratory culture disrupts the community balance by selecting for portions 

of the population atypical of natural low-nutrient habitats (66). Analysis of total DNA may 

be appropriate in some instances (30,83,84), but the study by Smith and Tiedje suggests 

that this method lacks the sensitivity required to detect the limited gene copies that may be 

present in a sample. Factors that may influence detection include: the efficiency of cell 

lysis and DNA extraction, abundance of target sequence, specificity and specific activity of 

the probe, and the limited amount of DNA that can bind to a filter (78).

An alternate quantitative approach presented by Voordouw etal. (88), termed 

reverse sample genomic probing (RSGP), can be employed to survey microbial 

communities without culturing. DNA extracted from samples is labeled and used to probe 

a filter spotted with known bacterial standards. The standards are characterized strains 

and/or isolates from a sample of interest. RSGP can be a useful tool for fingerprinting a 

population, but it has obvious limitations. The technical barriers are overshadowed by the
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fact that the experimental design of this method relies on some knowledge of the 

community structure. Furthermore, this procedure does not apply to.organisms which are 

unculturable.

The polymerase chain reaction (PCR) has the capability to generate large quantities 

of specific DNA sequence from environmental samples. Theoretically, only one copy of 

the target sequence is required for PCR amplification. Microbial ecologists therefore may 

be able to identity specific diminutive genotypic aspects of a population through PCR 

amplified DNA. A case in point involves a study which established what phylogenetic 

types occupy a particular niche based on rRNA sequence obtained by PCR amplification of 

a mixed population (4). The sequence-based surveys report unprecedented diversity. PCR 

analysis is limited by the fact that molecular data are required to design primers; thus 

rRNAs make excellent molecular chronometers allowing a broad range of phylogenetic 

relationships to be measured (92). Highly conserved domains make it possible to design 

degenerate oligonucleotides which amplify sequence from a diverse species of molecules. 

Ribosomal RNA phylogeny has substantially enhanced our evolutionary perspective in a 

short period of time.

Amplified DNA segments which encode proteins involved in specific metabolic 

activity have been used to assess community function and structure (2,5,72,78,86,90). If 

the gene belongs to a large group of targeted organisms, novel sequences can be cloned, 

screened with a variety of probes, and sequenced. Obtaining this type of molecular 

biological data can be time consuming, especially if one wants to study the diversity of a 

population. A rapid and inexpensive technique called “denaturing or temperature gradient 

gel electrophoresis” (DGGE or TGGE) allows PCR fragments of the same length to be 

distinguished by sequence (54). A polyacrylamide gel, which contains a denaturant 

gradient, separates DNA based on the melting of sequence-specific domains. This 

technique has been used to estimate the distribution of Desulfovibrio species in natural 

microbial mats and an experimental bioreactor (90). DGGE separated the PCR products
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into specific bands and accurately detected the species diversity of this group in four 

different environmental samples.

The PCR amplification procedures are 103-fold more sensitive than dot-blot 

analysis of community DNA extracted directly from environmental samples. Only 1 

cell/gram of sample is necessary to detect a target organism (78). DGGE identifies species 

rapidly by gene sequence and provides a community fingerprint. Each variation of 

genotype is distinguishable by its molecular signature. The greatest advantage is that non- 

culturable organisms are represented. Bej et al. (5) questioned the ability of this approach 

to differentiate between dead or alive bacteria. They found that positive signals were only 

detected from viable cells; i.e. cells capable of division, metabolism, or gene transcription 

(66).

In environmental monitoring, particularly in denitrification surveys, activities are 

more important than simply detecting the presence of an organism (or genotype).

Molecular analysis can ascertain the identity of proteins or genes, but it reveals nothing 

about the physiological role of that component in situ. Messenger RNA isolated from 

bacterial cells can be reverse transcribed into cDNA and PCR amplified (5,44). This 

technique can be used to measure the expression of a targeted gene. DGGE or Southern 

blot analysis could detect which species and physiologically types represent a niche of 

interest. However, native nucleases make mRNA difficult to purify. For this reason, 

mRNA detection is found to be less sensitive than direct amplification of DNA (1,000 cells 

needed compared with 1, respectively (44)). Although it has promise, reverse-transcription 

PCR techniques must find a way to increase the half-life of mRNA.

The main objective of this study was to ascertain the conserved nature of the E. 

coli-type NR and judge the worth of narG as a potential molecular probe to be used in 

environmental analyses. Surveying a wide variety of nitrate-reducing bacteria with probes 

derived from the cloned genes of E. coli's NR provides preliminary data and rationale to be 

used in the design of other NR-specific probes. Such a study will also serve to answer
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some pedigree questions regarding the origin and evolution of this environmentally 

essential metabolic pathway.
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CHAPTER 2

MATERIALS AND METHODS
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Bacterial Strains and Culture Conditions

Strain designations, growth temperatures, culture medium and sources of bacteria 

are listed in Table 1. Genomic DNA was isolated from organisms that were cultured 

aerobically (250 ml Erlenmeyer flask containing 50 ml of medium) with agitation (150-300 

RPM).

For the nitrate uptake experiments (Table 3), all bacteria, with the exception of 

Azotobacter vinelandii, P. fluorescens (ATCC 13525), Xanthomonas maltophilia and M91, 

were grown anaerobically in the presence of 50 mM KNO3. These cultures were grown in 

sealed 500 ml Wheaton bottles which contained a stir bar to prevent cell clumping. Culture 

bottles were flushed with argon for 15 minutes to create anaerobic conditions. The nitrate 

reducing system of the obligate aerobe X. maltophilia was induced under microaerobic 

conditions (100 RPM) in the presence of 50 mM KNO3 (1000 ml Erlenmeyer flask 

containing 500 ml of medium). The NRs of Rhizobium meliloti and Rhodobacter 

capsulatus were induced by growing the organisms microaerobically (500 mis of medium 

in a 1 L screen top flask) until saturation, then 500 mis of fresh media was added and 

flasks were sealed and flushed with argon to create anaerobic conditions. These cultures 

were subsequently incubated overnight.

Preparation of Genomic DNA

Genomic DNA was isolated according to the method of Chen and Kuo (17). Cells 

in late log phase were harvested by centrifugation of 1.5 ml of culture medium at 12,000xg 

for 3 min. at room temperature. Pellets are resuspended in 200 pi of lysis buffer (40 mM 

Tris-acetate pH 7.8, 20 mM sodiutp-gcetate, mM EDTA, and 1% SDS). Lysozyme (100 

pi of a 2 mg/ml stock) was added to cell suspensions and iocpfyated at 37°C for 30 min. 

when chemical treatment resulted in poor DNA yields. Staphylococcus aureus was lysed
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by incubating cells at 37°C for 30 min. in 100 pi of 50 mg/ml lysostaphin (60). After the
$

addition of 66 (105) pi of 5 M NaCl, the viscous mixture is centrifuged at 12,000xg (4°C) 

until the cell debris is pelleted; 10-15 min. The supernatant is extracted with an equal 

volume of chloroform followed by centrifugation at 12,000xg for 3 min. Preparations with 

high protein content required one or two additional phenol-chloroform extraction’s. DNA 

is precipitated at -70°C in two volumes of 100% ethanol followed by centrifugation at 

12,000xg for 15 min. at 4°C. Pellets were washed with 70% ethanol, dried in a Speed-vac 

and amended in TE. Cellular RNA was removed by the addition of 1 U of RNase (Sigma) 

followed by a 30 min. room temperature incubation. Genomic DNA was fragmented by 

restriction digestion with BamHI (Promega) and electrophoresed on a 0.7% agarose gel 

stained with ethidium bromide (0.5 pg/ml final) to estimate concentration. Attempts to 

quantitate genomic DNA with a spectrophotometer at 260 nm were unsuccessful (even with 

1.8-2.0 260/280 nm ratios), possibly due to the presence of interfering polysaccharides 

(17). This method yielded DNA of high molecular mass, with no significant trace of 

shearing or degradation. All DNAs were stored at -20°C.

Gene Probe Construction and Southern Hybridization

All transformations, plasmid DNA isolation, agarose gel electrophoresis and DNA 

restrictions were done as detailed by Sambrook etal. (68). Probes from narG were 

designed from the plasmid pFB71 which contains the 3.7 kb gene from E. coli (with 

permission from F. Blasco, kindly provided by J.F. Stolz). A restriction map of this clone 

may be seen in Figure 1. This plasmid was propagated in E. coli DH5a in the presence of

chloramphenicol (50 pg/mj). The probes, 2.1 kb Hpal-Hpal and 0.84 kb Hindlll-Hindlll, 

were constructed by complete encjpppclease digestion of 5-10 pg of plasmid. Fragments 

were separated on a 1 % low melting agarose gel and subsequently purified using Gene- 

Clean (Bio 101 Inc.). Quantitation of DNA was by the ethidium bromide (0.5 pg/ml final)
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agarose plate method (68). DNA was random prime labeled (Boeringer Mannheim 

Biochemicals) with a-32P dCTP (Amersham). Unincorporated nucleotides were removed

with a Sephadex G-50 NICK column (Pharmacia Biotech). Specific activity of labeled 

DNA was determined using a Beckman liquid scintillation counter.

Southern blot analysis was carried out as described by Southern (68,76). Genomic 

DNAs (10-15 pg) were restricted with an excess of BamHI overnight at 37°C. Agarose 

gels (0.7%) used in transfers were run at low voltage (20-30 volts) for 10-15 hours to 

improve the resolution of larger DNA fragments. The size of hybridized fragments was 

based on the migration of a molecular weight standard (X DNA cut with Hindlll) separated

in conjunction with the BamHI-restricted genomic DNAs. Capillary transfer of single 

stranded DNA to a supported nitrocellulose membrane (Schleicher and Schuell; BA-S 83, 

pore size 0.2 pm) was allowed to proceed overnight. DNA was fixed by baking the 

membrane in a vacuum oven for 1 hour at 80°C. Blots were hybridized overnight at 42°C 

with at least 10* cpm/pg of labeled probe in 10 ml of 6x SSPE, 5x Denhardt’s solution, 

0.5% SDS, 100 pg/ml salmon sperm DNA and 50% formamide. Membranes were initially 

washed twice at room temperature in 2x SSPE and 0.1% SDS for 15 minutes. Stringent 

washes were at 65°C in 0.1-0.5x SSPE and 0.1% SDS for 15 minutes. Autoradiograph 

exposure times were as long as 4 days at -70°C for blots that received stringent washing.

Measurement of Nitrate Uptake

Changes in the concentration of nitrate were measured with an Orion digital ion 

analyzer (model 601 A) connected to an Orion nitrate electrode (model 93-07) and a double 

junction reference electrode (model 90-02). This device was calibrated directly with known 

concentrations of KN03 in 50 mM KPO4 pH 7.0 and 2% ISA (ionic strength adjuster - 

Orion #930711). Induced late log cultures (500 ml) were harvested by centrifugation at
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10,000xg for 10 minutes at room temperature. Pellets were washed twice in several 

volumes of 50 mM KPO4 pH 7.0 supplemented with 50 pg/ml chloramphenicol. Cells 

were suspended 1 g (wet weight)/5 ml of buffer. The 10 ml reaction vessel contained the 

following: 9.4 ml 50 mM KPO4 pH 7.0, 0.4 ml ISA, 0.2 ml of cell stock suspension 

(1 g/5 ml) and 50 pi of 100 mM KNO3 (500 pM final). Anaerobic conditions were 

maintained by continually flushing the vessel with argon. After an initial period of 

fluctuation, a baseline concentration of nitrate was observed. The uptake of nitrate was 

initiated by the addition of 500 pi of 1 M formate (0.5 mM final concentration). Nitrate 

concentrations were monitored for one minute (15 second intervals) after addition of the 

electron donor. For each organism, uptake measurements were done in triplicate. The 

protein content (mg/ml) of cell suspensions was determined after whole cells were 

disrupted by sonication or with IN NaOH using the coomassie blue method (595 nm) with 

a standard curve of known bovine serum albumin concentrations (11). Rates of nitrate 

uptake are expressed in nmole min 1 mg protein4.
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Development of Probes from narG of Escherichia coli

narG was selected to construct the probes used in this study because previous data 

indicated that this gene may be genetically conserved (10,55). When Bonnefoy etal.

(1987) discovered a second NR (NarZ coded by narZYWV) in E. coli, they also found that 

partial but significant homology existed between it and the NR complex coded by narGHJI 

(10). Southern hybridization experiments revealed that an internal 2.1 kb Hpal-Hpal of 

narG shared a high degree of homology with a corresponding 1.05 kb Hpal-Hpal fragment 

of narZ. The narG and narZ genes encode the a subunit of NR and it is likely they are

conserved because of this polypeptides role in anchoring the molybdenum cofactor to the 

catalytic unit. The restriction map in Figure 1 shows the internal location of the 2.1 kb 

Hpal-Hpal fragment (Probe B) relative to narG. Stolz etal. used the latter along with a

O. 84 kb Hindlll-Hindlll fragment (Figure 1) located upstream of Probe B designated 

Probe A (55). They discovered that both demonstrated homology with genomic DNA of

P. aeruginosa and P. stutzeri, but not with G. metallireducens. Based on this molecular 

evidence, both probes were used in this survey.

Genetic Relatedness and Expression of Nitrate 

Reductase in Diverse Organisms

The 13 genera of bacteria surveyed in this study reside in two phyla; the purple 

bacteria and the gram positive eubacteria. The eubacteria are taxonomically organized into 

ten phyla based on 16S rRNA sequence comparisons (92). This diverse group of 

organisms share a common ancestor that existed 5-10 x 108 years ago (47). The 

phylogenetic tree for the purple bacteria, or proteobacteria, is separated into 4 subdivisions: 

ct,p,y and 6. The study presented in this thesis includes organisms from the «,p and y
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subdivisions of the purple bacteria and gram positive species from the low G+C 

subdivision of the Eubacteriacea (Figure 2). The common ancestor of these two phyla and 

the related prokaryote, cyanobacteria, was believed to be an anoxygenic phototroph due to 

the distribution of this phenotype in the eubacterial phylogenetic tree (12,47,92). It is 

believed that the capability to photosynthesize has since been lost by many organisms and 

replaced with other energy generating processes (92). This has resulted in the great 

metabolic diversity observed among the members of this subkingdom.

The microbes chosen for this study represent a phylogenetically and physiologically 

diverse group of nitrate-reducing bacteria. Of the 15 species surveyed which contain a 

respiratory NR (or enzyme that resembles a typical dissimilatory NR), 9 demonstrated 

homology with the narG probes. Continuous selection for the same enzymatic function has 

evidently preserved the a subunit’s sequence in these lineages. The molecular analysis

done in this study shows that some organisms contain a gene(s) homologous to narG of E. 

coli. However, this approach reveals nothing about the expression or physiological 

function of the respective gene product. Therefore, bacteria were also examined 

physiologically to confirm their ability to reduce nitrate anaerobically.

A variety of techniques exist which can determine if a given bacterium is capable of 

dissimilatory nitrate reduction/denitrification (45). A common method used to detect the 

expression of NR involves monitoring the ability of a cell suspension to remove nitrate 

from the external milieu under anaerobic conditions. The activity of NR has been shown to 

be necessary for nitrate uptake to occur (19,20,27,67). The current model of nitrate uptake 

in E. coli proposes that transport is metabolically coupled to nitrate reduction (67). In this 

study, a nitrate specific electrode was used to measure rates of uptake (change in external 

nanomolar concentrations of nitrate versus time, Table 3). All cells were grown in the 

presence of an appropriate nitrogen source, to repress assimilatory pathways, thus they 

would not contribute to nitrate utilization. Organisms were grown anaerobically with non- 

fermentable glycerol when it was possible. Those that could not support growth on this
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carbon source were grown on substrates that had previously complemented nitrate 

respiration, as indicated by the literature.

Purple Bacteria

Of the 10 eubacterial phyla identified, the purple bacteria are the largest and most 

physiologically diverse. Our contemporary perception of microbiology is the result of 

scientific research which has primarily focused on the members of this phyla. A variety of 

metabolic processes are observed in this group: the widely distributed phototrophic 

phenotype (which provides the backbone for classifying these organisms), heterotrophy, 

autotrophy, lithotrophy and sulfate reduction (12). In addition, many genera are also able 

to respire anaerobically using nitrate as a terminal electron acceptor.

Rhizobium meliloti belongs to the ex subdivision of the purple bacteria. It is an

agriculturally important nitrogen-fixing bacterium that lives in symbiosis with legumes. 

Rhizobium and Bradyrhizobium are the only nitrogen-fixing genera which contain 

denitrifying strains (15). These bacteria are also known to contain an assimilatory NR. 

Some nitrate respirers do not contain all four reductases of the pathway. For example, R. 

meliloti (ATCC 9930) lacks a N2O reductase and thus performs a truncated kind of 

denitrification. Remarkably, several R. meliloti strains keep some of their denitrification 

genes on a megaplasmid where genes for nodulation and symbiotic nitrogen fixation are 

located (16). It is not currently known if genes for NR are also located on this 

megaplasmid. Chan etal. constructed a probe from the gene sequence of P. stutzeri's NOS 

which hybridized to all R. meliloti isolates possessing N2O reduction activity (see above), 

one strain of denitrifying A. eutrophus and several other denitrifying Pseudomonads (16). 

Total DNA isolated from R. meliloti did not react with either narG probe (Figure 3). It may 

share NOS homology with A. eutrophus and a number of Pseudomonads, but its NR 

appears to be genetically distinct from the one possessed by the latter organisms. Induction
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of nitrate respiration and the uptake experiments (Table 3) demonstrate that this microbe’s 

dissimilatory NR is an expressible, functional complex. Anaerobic growth of R. meliloti 

was not initially successful. To express its NR, cultures were grown micro-aerobically in 

the presence of nitrate till early log phase, then a volume of fresh medium was added and 

the conditions were made anaerobic. This procedure did induce nitrate respiration in this 

microbe as demonstrated by the uptake data (Table 3).

Hyphomicrobium vulgare and H. zavarzinii are budding methylotrophic bacteria 

that form round to oval cells with one or more short hyphae up to three times the length of 

the mother cell (28). These microbes belong to the a subdivision of the proteobacteria

(77). Cell division in these organisms is very interesting because instead of binary fission, 

new cells form by budding and the mother cell retains its identity. The appendages are 

used for attachment and increase surface:volume ratios which may offer a competitive 

advantage in the dilute aquatic environments they commonly inhabit (12). These bacteria 

are used in some methods of tertiary water treatment to decrease the BOD of industrial 

effluent. They are able to denitrify at relatively high oxygen tensions with methanol or 

methylamine as a carbon source (40). This phenomenon was demonstrated in the 

Hyphomicrobium long before “aerobic denitrification” was characterized in Thiosphaera 

pantotropha (6,7,64). Expression of NR and the uptake experiments were performed only 

under anaerobic conditions in this study (Table 3). Hyphomicrobium vulgare and H. 

zavarzinii shared similar autoradiograph patterns; two strong hybridization signals at 22 and 

18 kb with both probes (Figure 3). It is very likely that each signal represents a separate 

gene. This inference is substantiated by the identical autoradiograph patterns exhibited with 

both probes. If a probe derived from the 5’ region of a gene produced two hybridization 

signals because the homologous region was bisected with a restriction site (BamHI), 

another probe from sequence further downstream of the latter should hybridize to only one 

of the large genomic fragments. These conclusions are based on the assumption that
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organisms which contain an E. coli-hke NR (a subunit) also share a similar genetic

arrangement. These data suggest that the Hyphomicrobium, like many other NR- 

containing genera, may have members which possess an additional form (or gene copy) of 

NR in addition to the known respiratory type.

Thiosphaera pantotropha (ex subdivision)was originally isolated by Robertson and

Kuenen from an industrial effluent-treatment plant on account of its ability to grow 

aerobically and anaerobically on reduced sulfur compounds and hydrogen, while fixing 

carbon dioxide (64). Its entire denitrification pathway from nitrate to N2 is expressed and 

active under low oxygen tension (6). Thiosphaera pantotropha has become a scientifically 

significant organism because it grows mixotrophically and heterotrophically on a variety of 

substrates, and thus could offer an inexpensive alternative to traditional microbial 

treatments that remove nitrate and reduced sulfur compounds from industrial effluent. This 

organism has a NR which is membrane-bound and resembles the respiratory enzyme found 

in enteric nitrate respirers both in respect to its catalytic properties and translational/post- 

transcriptional regulation by oxygen. In addition, T. pantotropha has a second periplasmic 

NR which is expressed under both aerobic and anaerobic growth conditions (7). For the 

purpose of this investigation, expression of nitrate respiration and the uptake experiments 

on this organism only were only performed under anaerobic conditions (Table 3). A 9 kb 

fragment of this microbe’s genomic DNA strongly hybridized to the probes (Figure 3). 

Another band at 20 kb (data not shown) is observed under low stringency. It is possible 

that the band removed under stringent washing (20 kb) represents the periplasmic enzyme 

and the stronger signal at 9 kb is the membrane-bound form. This preliminary conclusion 

is entirely based on the regulatory and physiological properties of these NRs (7).

Paracoccus denitrificans (ex-3) is a facultative autotroph that grows aerobically or

anaerobically with NOX as a terminal electron acceptor and is commonly found in soils 

(37). Under anaerobic conditions, it may obtain energy heterotrophically or by autotrophic
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hydrogen-linked denitrification (59). It is a scientifically significant organism because it is 

believed to be closely related to the endosymbiont from which mitochondria arose (81).

This bacterium contains a respiratory NR that is thought to be physiologically and 

biochemically very similar to the one found in E. coli (37). The Pa. denitrificans NR 

complex possesses p and y subunits that are indistinguishable from those of E. coli on

SDS-PAGE (18). Furthermore, electron paramagnetic resonance spectroscopy revealed 

that the “ligand environment” of the molybdenum cofactor is identical in NRs from Pa. 

denitrificans, P. aeruginosa, and E. coli (85). Based on this evidence, it is very interesting 

that Pa. denitrificans did not hybridized with either narG probe (Figure 3). No signal was 

detected even under low stringency (data not shown). Sequence comparisons of 16S 

rRNA between Pa. denitrificans and T. pantotropha revealed an identical primary structure, 

suggesting these organisms have a close evolutionary link (41). One would expect that 

these bacteria would also share many other genetically conserved regions. Nevertheless, 

the NRs they possess appear to be genetically different. Nitrate uptake experiments 

demonstrate that this strain expressed NR when cultured under anaerobic conditions in the 

presence of nitrate (Table 3).

Rhodobacter capsulatus (cx-3) is a metabolically versatile organism that is abundant

in polluted waters and is commonly found in mud and stagnant water that receives 

exposure to light (12). This microbe can grow photoautotrophically, photohetero- 

trophically, chemoautotrophically, chemoheterotrophically or fermentatively (43). It also 

possesses dissimilatory NR activity when the organism is continuously subcultured in 

nitrate medium under phototrophic conditions (48). It will not grow under 

heterotrophic/anaerobic conditions in the dark because nitrate respiration in R. capsulatus 

does not appear to provide enough energy for growth and probably only acts to supplement 

the energy generated through photosynthesis. Attempts to express NR in R. capsulatus 

under photoheterotrophic conditions, as described by McEwan etal. (48), were not
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successful. The NR complex of this bacterium, however, does appear to be expressed 

when it is cultured anaerobically under chemoheterotrophic conditions as revealed by the 

uptake experiments (Table 3). The NR of this organism was expressed in a manner similar 

to that described previously for R. meliloti (See pg. 25). The expression study implies that 

nitrate respiration in this bacterium, like many others, is regulated by oxygen and nitrate 

due to NRs derepression under anaerobiosis in the presence of nitrate. The activity and 

role of this enzyme in energy generation are still not clear. The narG probes did not 

hybridize to genomic DNA from this organism which supports the existing belief that it 

contains a novel form of NR (63).

Alcaligenes eutrophus belongs to the p subdivision of the purple bacteria (P-2) and

is a soil/water bacterium that can grow heterotrophically, autotrophically and use 

nitrate/nitrite for anaerobic respiration (73). After the Pseudomonads, the members of 

Alcaligenes are believed to be the second most abundant group of denitrifiers (24). The 

rate of nitrate uptake in A. eutrophus was greater than any other observed, 244 + 46 

nmol/min/mg (Table 3). This particular organism has three distinct NR activities. One has 

an assimilatory function and another is typical of respiratory NRs. The third type, nitrate 

reductase periplasmic (NAP), is composed of two subunits and has no clear physiological 

function (73). Sequence data suggests that NAP is a soluble molybdenum-containing 

protein with two conserved segments which resemble the 4Fe-4S centers of bacterial 

ferredoxins and a segment of the small subunit that resembles heme-binding sites typical of 

c-type cytochromes. The role of this enzyme may be that of a specific oxidoreductase for 

certain reducing equivalents or it could also function to maintain the cellular redox balance 

when the organism is in transition between aerobic and anaerobic conditions (73). 

Alcaligenes eutrophus has hybridization signals at 23 and 16 kb with both probes indicating 

that it contains two genes homologous to narG. This observation may be direct evidence 

that the NAP form of NR may have arisen by gene duplication of respiratory NR.

However, it is also possible that one of the signals corresponds to the assimilatory NR this
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organism is known to contain. It is unlikely this is the case given that other eubacterial 

assimilatory NRs appear not to have cross-react with these probes. Additionally, sequence 

comparisons between the periplasmic enzyme and other molybdenum-containing enzymes

such as NR (assimilatory and dissimilatory) and formate dehydrogenase have revealed
)

conserved elements (73).

An enrichment survey of environmental samples for denitrifying organisms from
i

around the world indicated that Pseudomonas fluorescens (y-3) strains represented the

majority of organisms isolated (24). It is believed that members of the genus Pseudomonas 

are probably the most common and widely distributed denitrifiers (59). Homology to both 

probes was demonstrated with P. aeruginosa (23 kb) as previously shown (55), but 

surprisingly not the initial marine strain of P. stutzeri (Presque-Isle) chosen. It is 

interesting to observe NR diversity between organisms of the same genus. We therefore 

obtained the clinical isolate of P. stutzeri used in the Geobacter study (55) and both probes 

did hybridize to a 22 kb band of its chromosomal DNA. These organisms were used as 

positive controls in this study. Pseudomonas fluorescens is an environmentally significant 

organism that is closely related to P. aeruginosa and P. stutzeri. Two biotypes of P. 

fluorescens were used in this survey. Biotype C denitrifies (ATCC 17400), but biotype A 

(ATCC 13525) does not and thus served as a negative control. Both probes hybridized to a 

16 kb fragment of biotype C (Figure 3, light band in blot A) and no signals were detected 

from biotype A. Biotype C was grown under nitrate respiring conditions and a significant 

rate of nitrate uptake was observed (Table 3). Biotype A was not capable of anaerobic 

growth.

The obligate aerobe X. maltophilia is a y subdivision (y-3) member of the purple

bacteria and is found in soil surrounding the rhizosphere of some plants and can also be an 

opportunistic human pathogen (94). It converts nitrate to nitrite while growing aerobically. 

Two NRs have been purified from this organism (35). One contains cyt b and
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molybdenum while the other is smaller and has not been well characterized biochemically. 

Furthermore, X. maltophilia has no detectable NiR activity. It has been speculated that this 

organism uses nitrate as an alternative electron acceptor under semi-aerobic conditions thus 

oxidizing excess NADH and NADPH (94). It is not clear whether energy is generated 

from nitrate metabolism. This process likely contributes to the cycling of nitrogen in 

aerobic environments generating nitrite that can be oxidized by nitrifying bacteria (8). 

Southern hybridization indicated that Xanthomonas maltophilia DNA has two signals at 20 

and 15 kb that share homology to narG (Figure 3). A third band is observed with Probe B 

at around 4 kb, but was removed during stringent washing (data not shown). Perhaps the 

two forms of NR it contains have a respiratory origin, but have assumed alternate functions 

in this obligate aerobic microorganism. This bacterium is a close relative of Pseudomonas 

that along its evolutionary journey has lost the ability to grow anaerobically. Attempts to 

express the NR of X. maltophilia under fully aerobic conditions in the presence of nitrate 

were not successful. This system is only expressed when this organism is grown 

microaerobically in the presence of nitrate (Table 3).

Azotobacter vinelandii is a free-living obligate aerobic nitrogen-fixing soil bacterium 

that assimilates nitrate by ultimately reducing it to ammonia via the type B assimilatory NR 

and NiR. As previously mentioned, Lightfoot et al. demonstrated cross hybridization 

between E. coli's narG and a single chromosomal region of the cyanobacterium 

Synechococcus (39). This segment is believed to encode an assimilatory NR gene for this 

blue green algae. Therefore, it was important to determine whether this gene for the 

catalytic activity of NR is highly conserved throughout the microbial world. No signal was 

detected suggesting that these assimilatory NR genes are genetically distinct from those 

encoding dissimilatory reductases.

Proteus mirabilis (y-3) is physiologically like E. coli and is classified as an enteric

bacteria. This group is of considerable medical importance because many members are 

pathogenic. Proteus mirabilis infections are frequently observed in the urinary tract or
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kidneys (12). Its NR contains molybdenum cofactor and the same cyt b as E. coli's (79). 

This study has surprisingly shown that no genetic relationship appears to exist between the 

two enzymes. The rate of nitrate uptake obtained for P. mirabilis confirms that this 

organism possesses a NR and has the ability to respire anaerobically (Table 3).

M91-3 is a soil isolate that has the ability to mineralize the pesticide atrazine and use 

it as a sole nitrogen and carbon source. The API-NFT system of classification identified 

this microbe as Agrobacterium radiobacter (ex subdivision (92)) and fatty acid profiling

identified it as a member of the genus Xantbobacter (62). This organism is able to reduce 

nitrate to nitrite as it slowly degrades atrazine anaerobically, but it is not known for sure if 

these processes are coupled to dissimilatory nitrate reduction or denitrification. The 

genomic DNA from this organism did not hybridize with either probe.

Gram Positive Eubacteria

Originally, prokaryotes were classified based on the structure and staining of their 

cell wall. Gram negative bacteria, many of which share a cell wall that consists of several 

complex layers (peptidoglycan, phospholipid and lipopolysaccharide (12)), are not a 

legitimate phylogenetic unit and comprise many eubacterial phyla. However, the gram 

positive bacteria do form an evolutionarily related group (92). The cell walls of gram 

positive bacteria are made of one thick layer that mainly consists of peptidoglycan (12). 

Some members of this phyla contain a NR and are capable of nitrate respiration. The 

majority of reported thermophilic denitrifiers have been Bacillus species, which suggests 

that these organism are ecologically significant members of thermophilic communities (31). 

The following is an overview of the two NR-containing gram positive (low G+C species 

(92)) microorganisms surveyed in this study.

The facultative aerobe Bacillus licheniformis is a common spore-forming bacterium 

that is readily isolated from soil or air (12). This organism is susceptible to lysis when the
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ATP-dependent synthesis of cell wall constituents is interrupted (71). Autolysis can be 

avoided under anaerobic conditions through ATP synthesis via nitrate respiration or 

fermentation. Most enterics, such as E. coli have less than optimum NR activity under 

anaerobic conditions in the absence of nitrate. In contrast, the transcription of the NR 

genes in B. licheniformis are regulated by the intracellular redox potential and not the 

presence of nitrate. The NR complex is inactive only when conditions are fully aerobic and 

in the absence of an electron donor; thus inhibition requires complete withdrawal of 

electron flow from the enzyme (71). Bacillus licheniformis has an 18 kb band that reacted 

strongly under stringent conditions with probe A, but the signal from probe B was 

removed under stringent washing (Figure 3). It’s NR was expressed under anaerobic 

conditions and nitrate uptake was observed (Table 3).

Staphylococcus aureus is a common human pathogen associated with such 

conditions as boils, pimples, pneumonia, osteomyelitis, meningitis and arthritis (12). It 

contains a membrane-bound respiratory NR (cyt b) along with a form which occurs in the 

cytoplasm (14). The cytoplasmic form accounts for 50% of the total activity. Antiserum to 

the membrane-bound NR reacts with both forms and thus the two enzymes are 

immunologically indistinguishable (13). The relationship, genetic and/or physiological, 

that exists between the two enzymes is still not clear. Staphylococcus aureus did not have 

homology with either probe. Attempts to culture this bacterium anaerobically in the 

presence of nitrate with the non-fermentable carbon source glycerol were not successful. It 

did grow anaerobically with glucose and a rate of nitrate uptake was obtained (Table 3).

Comments

This study suggests that the evolutionary history nitrate respiration is not like that of 

sulfate reduction or lithotrophy, i.e. recently attained by microorganisms to replace the 

photosynthetic apparatus (12,92). Instead, it implies that nitrate respiration was deeply
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embedded in the common ancestor that purple and gram-positive eubacteria diverged from. 

Alternatively, the appearance of this gene in a heterogeneous group of bacteria could be the 

result of lateral gene transfer. Some enzymes involved in denitrification are known to be 

coded on native plasmids (16), nevertheless it is highly improbable that these genes were 

expansively distributed in this manner due to the genetic complexity of this system (46) and 

its widespread appearance among a diverse variety of eu- and archaebacteria (extremely 

halophilic branch) (29). These data support an ancient origin for NR and are consistent 

with current theories on the early evolutionary appearance of nitrate respiration (46,69).

An important ancestry question is now raised about the origin, evolution and 

distribution of NR encoding genes (specifically the a subunit) in nitrate-respiring bacteria

that did not hybridize to the narG probes. These include: P. stutzeri (Presque-Isle), R. 

meliloti, Pa. denitrificans, P. mirabilis, S. aureus, R. capsulatus and G. metallireducens 

(55). These organisms appear to possess a NR genetically distinct from the enzyme found 

in dominant nitrate-respiring genera such as Pseudomonas and Alcaligenes. No exclusive 

phylogenetic relationship appears to exist between them. Genetic diversity was further 

demonstrated between members of the same genus since a marine strain of P. stutzeri 

(Presque-Isle) failed to hybridize with either probe while the clinical isolate of P. stutzeri 

did. These findings rule out the possibility that a single form of NR is distributed 

throughout the eubacterial tree. The ability to use nitrate as a terminal electron acceptor is 

an adaptation that provided many organisms with a selective advantage in anaerobic 

environments. It appears that the NR phenotype may have arisen from more than one 

evolutionary solution to anaerobic respiration over a long evolutionary time frame. 

However, such conclusions may be premature in view of the narrow range of this survey 

and limited data used to establish the ancestral lineages of NR in prokaryotes.

An alternative explanation might be that all forms of the enzyme are distantly related 

and subsequent divergence resulted from the dynamic evolutionary pressures which shape 

genes and organisms. When genes of a common ancestor are selected for by the same
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pressures, they tend to evolve in parallel. The selective forces often involve an integral 

component of the gene products structure or function. Conservation of tiarG could be a 

result of the a subunits role in binding the molybdenum cofactor. The cofactor binding

sequence would be strongly selected for in bacteria dependent on nitrate respiration. The 

acquisition of alternate metabolic pathways provided many organisms with several 

physiological options and the potential to colonize a variety of ecological niches. It is 

possible that these evolutionary processes reduced the “importance” of nitrate respiration in 

some microbes. This would alleviate a great deal of the selective pressure placed on these 

genes and result in divergence from the common ancestral sequence. As Carl Woese has 

written (92):

“If the environment in which a phenotype arises (first stabilizes) persists, that 

phenotype will persist, fundamentally unchanged.” “On the other hand, all drastic 

(broad-ranging) changes in ancestral phenotype necessarily result from increased 

mutation rates, which tend to occur under unusual, drastic environmental 

conditions, when selection is relaxed in ways that allow the mutational rate to rise.” 

It is quite evident that further molecular biological data regarding NR will need to

accumulate before any explicit pedigree questions can be answered. What has been made 

clear about this enzyme is that like other NOX reductases, it appears to be genetically diverse 

contrary to the biochemical and physiological evidence which has implied that it was highly 

conserved. This study has confirmed that a genetically conserved form of NR is 

distributed among the eubacteria and found in dominant nitrate-respiring genera like 

Pseudomonas and Alcaligenes. This suggests that the narG probes may be suitable to 

detect such organisms in environmental samples. A fundamental understanding concerning 

the distribution of NR and other NOX reductases is as essential to the microbial evolutionist 

as it is to the microbial ecologist. Nitrate respiration is a strong candidate for the first form 

of respiration to have evolved. Even if not the first, it is an ancient form of respiration and
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knowledge of its development would reveal much information about early prokaryotes and 

their evolution.

Future Experiments

These results indicate that the narG sequence may be appropriate to use in 

conjunction with conserved regions of NiR and NOS genes to develop probes (or 

degenerate PCR primers) designed to identify denitrifiers and nitrate respirers 

(2,5,38,72,78,86,89,90). Some molecular data on NR exist which could be used to 

design degenerate PCR primers without obtaining more sequence data: i.e. the NAP of A. 

eutrophus (73), narZYWV of E. coli (10) and several other molybdenum-containing 

proteins of E. coli. Recent advances in molecular microbial ecology allow investigators to 

track microorganisms in environmental samples based on the sequence of a gene or protein. 

Eventually, these techniques will be able to accurately assess the composition and activity 

of microbial communities. The dispersal of the narG gene in a wide variety of bacteria 

suggests that other cloned E. coli NR genes, narEl and narl, may also be highly conserved 

and therefore good candidates for the development of other genetic probes to be used in 

evolutionary and environmental analyses.

The narG probes may also be an easy way to detect NR-containing bacteria with 

dissimilatory genes that are poorly to expressed. Often an organism is thought not to 

possess a pathway because the particular phenotype can not be expressed in laboratory 

culture. The gene probe method allows an isolate to be screened for the presence of a 

certain gene, in this case a gene of its NR. A positive signal does not mean that the 

organism is a nitrate-respirer, it merely indicates that the microbe contains a dissimilatory 

NR-like gene found in many nitrate-respiring and denitrifying bacteria.

Finally, narG could be used to further study the molecular biology of NR in 

organisms which hybridized to the probes. Cloning experiments are often designed such
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that specific sequences are used as probes to identity a given gene. When little is known 

about the molecular biology of a system, the protein of interest is purified and amino acid 

sequence from the N- and C- terminal ends is used to construct oligonucleotides. These 

oligonucleotides are then used to screen a library and locate a clone that contains the 

homologous DNA sequence. Because probes derived from narG cross-reacted with the 

NR of many diverse organisms, they could also be used to clone novel NRs from a variety 

of species.
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Table 1. Organisms, culture medium, growth temperatures and sources of bacteria. 

(*) Growth medium as detailed by the American Type Culture Collection
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Organism
Growth

Culture Medium Temperatures
°C

Source

a-PurpIe Bacteria

Rhizobium meliloti YEM-Mannitol, MSG* 25 ATCC 9930

Azotobacter vinelandii Burks- 15mM NH4C1* 25 ATCC 13705

Thiosphaera pantotropha T. pant media-NaOAc* 37 ATCC 3551

Paracoccus denitrificans T-soy-Glycerol 30 ATCC 19367

Rhodobacter capsulatus Van Niel’s-Succinate* 30 ATCC 23782

Hyphomicrobium vulgare Hyph.media-methanol (39) 25 ATCC

Hyphomicrobium zavarzinii Hyph.media-methanol (39) 25 ATCC

p-Purple Bacteria

Alcali genes eutrophus T-soy-Glycerol 25 ATCC 17699

y-PurpIe Bacteria

Pseudomonas fluorescens T-soy-Glycerol 25 ATCC 13525
Biotype A

Pseudomonas fluorescens T-soy-Glycerol 25 ATCC 17400
Biotype C

Pseudomonas aeruginosa T-soy-Glycerol 37 Lab. Stock
PA01

Pseudomonas stutzeri T-soy-Glycerol-1% Sea Salt 37 Presque-Isle
Marine strain

Pseudomonas stutzeri T-soy-Glycerol 37 J.F. Stolz
Clinical isolate

Xanthomonas maltophilia T-soy-Glycerol 30 ATCC 17666

Proteus mirabilis T-soy-Glycerol 37 ATCC 29906

Escherichia coli T-soy-Glycerol 37 Lab. Stock
RK4353

M91-3 T-soy-Glycerol 25 J.B. Robinson

Low G+C-Gram Positive Bacteria

Bacillus licheniformis T-soy-Glycerol 37 ATCC 14580

Staphylococcus aureus T-soy-Glucose 37 ATCC 33528
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Table 2. Summary of the Southern blot survey with probes derived from the narG of

Escherichia coli.

Key: (+) Hybridization under stringent conditions.

(±) Hybridization under low stringency.

(-) No hybridization.
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Organism

Probe A
(0.84 kb Hindlll) 

Hybridization Mol. wt.

Probe B 
(2.1 kb Hpal) 

Hybridization Mol. wt.

Rhizobium meliloti (-) (-)

Azotobacter vinelandii (-) (-)

Thiosphaera pantotropha (+) 9 kb (+) 9 kb
(±) 20 kb (±) 20 kb

Paracoccus denitrifi cans (-) (-)

Rhodobacter capsidafus (-) (-)

Hyphomicrobium vulgare (+) 22,18 kb (+) 22,18 kb

Hyphomicrobium zavarzinii (+) 22,18 kb (+) 22,18 kb

Alcali genes eutrophus (+) 23,16 kb (+) 23,16 kb

Pseudomonas fluorescens (-) (-)
Biotype A

Pseudomonas fluorescens (+) 16 kb (+) 16 kb
Biotype C

Pseudomonas aeruginosa (+) 23 kb (+) 23 kb
PA01

Pseudomonas stutzeri (-) (-)
Marine strain

Pseudomonas stutzeri (+) 22 kb (+) 22 kb
Clinical isolate

Xanthomonas maltophilia (+) 20,15 kb (+) 20,15 kb
(±) 4 kb

Proteus mirabilis (-) (-)

Escherichia coli (not shown) (+) 18 kb (+) 18 kb
RK4353

M91-3 (-) (-)

Bacillus licheniformis (+) 18 kb (±) 18 kb

Staphylococcus aureus (-) (-)
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Table 3. Rates of nitrate uptake measured in nitrate-respiring bacteria. Carbon sources 

used in anaerobic growth of organisms selected to be non-fermentable when

possible. Uptake was initiated by addition of the electron donor formate (500 pM).

Organism
Rate of NO,' Uptake 

nmole min 1 mg'1 protein +/- SEM Carbon Source

Rhizobium meliloti 186+15 Mannitol

Thiosphaera pantotropha 147 + 44 Acetate

Paracoccus denitrificans 134+ 21 Glycerol

Rhodobacter capsulatus 243 + 37 Succinate

Hyphomicrobium vulgare 146+ 24 Methanol

Hyphomicrobium zavarzinii 203 + 11 Methanol

Alcaligenes eutrophus 244 + 46 Glycerol

Pseudomonas fluorescens 151 + 29 Glycerol
Biotype C

Pseudomonas aeruginosa 169 + 59 Glycerol

Pseudomonas stutzeri 147+ 36 Glycerol
Presque-Isle

Pseudomonas stutzeri 192 + 28 Glycerol
J.F. Stolz

Xanthomonas maltophilia 135 + 22 Glycerol

Proteus mirabilis 115+ 19 Glycerol

Escherichia coli 135 + 5 Glycerol

Bacillus licheniformis 158+ 18 Glycerol

Staphylococcus aureus 158 + 57 Glucose
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Figure 1. Restriction map of pFB71 (riarG) and internal position of probe A (0.84 kb 

Hindlll) and probe B (2.1 kb Hpal) relative to tiarG. Kindly provided by J.F. 

Stolz.
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Figure 2. Schematic diagram of phylogenetic relationships among surveyed nitrate- 

reducing bacteria based on 16S rRNA phylogeny as presented by Woese (92). 

Evolutionary distances are not drawn to scale.
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Figure 3 A and B. Southern blots of BamHI restricted bacterial genomic DNA with the 

narG probes.

3 A - Probe A (0.84 kb Hindlll) 3 B - Probe B (2.1 kb Hpal)

1. pFB71 cut with Hpal 2. Pseudomonas aeruginosa 3. P. stutzeri (J.F. Stolz) 

4. P. stutzeri (Presque-Isle) 5. P. fluorescens (Biotype X) 6. P. fluorescens 

(Biotype C) 7. Xanthomonas maltophilia 8. Azotobacter vinelandii 

9. Rhizobium meliloti 10. Alcaligenes eutrophus 11. Paracoccus denitrificans 

12. Proteus mirabilis 13. Staphylococcus aureus 14. Bacillus licheniformis 

15. Rhodobacter capsulatus 16. Tbiospbaera pantotropha 17. Hypbomicrobium 

vulgare 18. H. zavarzinii 19. M91-3
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