380 research outputs found

    The Era of Massive Population III Stars: Cosmological Implications and Self-Termination

    Full text link
    The birth and death of the first generation of stars have important implications for the thermal state and chemical properties of the intergalactic medium (IGM) in the early universe. Sometime after recombination, the neutral, chemically pristine gas was reionized by ultraviolet photons emitted from the first stars, but also enriched with heavy elements when these stars ended their lives as energetic supernovae. Using the results from previous high-resolution cosmological simulations of early structure formation that include radiative transfer, we show that a significant volume fraction of the IGM can be metal-polluted, as well as ionized, by massive Population III stars formed in small-mass (10^6-10^7 Msun) halos early on. If most of the early generation stars die as pair-instability supernovae with energies up to 10^{53} ergs, the volume-averaged mean metallicity will quickly reach Z ~ 10^{-4}Zsun by a redshift of 15-20, possibly causing a prompt transition to the formation of a stellar population that is dominated by low-mass stars. In this scenario, the early chemical enrichment history should closely trace the reionization history of the IGM, and the end of the Population III era is marked by the completion of reionization and pre-enrichment by z=15. We conclude that, while the pre-enrichment may partially account for the ``metallicity-floor'' in high-redshift Lyman-alpha clouds, it does not significantly affect the elemental abundance in the intracluster medium.Comment: Version accepted by ApJ. Minor revisions and a few citations adde

    Subdwarf B Stars from the ESO Supernova Ia Progenitor Survey -- Observation versus Theory

    Get PDF
    Original paper can be found at: http://www.astrosociety.org/pubs/cs/328.html--Copyright Astronomical Society of the PacificWe present the analysis of a high-quality sample of optical spectra for 76 sdB stars from the ESO Supernova Ia Progenitor Survey. Effective temperature, surface gravity, and photospheric helium abundance were derived from line profile fits. We demonstrate that our subsample of 52 single-lined sdB stars is a useful tool to compare observation and theory. The predictions of population synthesis models for close binary evolution are compared to our data. We show that the simulations cover the observed parameter range of sdBs, but fail to reproduce the observed distribution in detail

    Telling the tale of the first stars

    Full text link
    HE 0107-5240 is a star in more than once sense of the word. Chemically, it is the most primitive object yet discovered, and it is at the centre of debate about the origins of the first elements in the Universe.Comment: 3 pages, 0 figures, published in Nature "News and Views," Apr. 24, 200

    A Search for Nitrogen-Enhanced Metal-Poor Stars

    Get PDF
    Theoretical models of very metal-poor intermediate-mass Asymptotic Giant Branch (AGB) stars predict a large overabundance of primary nitrogen. The very metal-poor, carbon-enhanced, s-process-rich stars, which are thought to be the polluted companions of now-extinct AGB stars, provide direct tests of the predictions of these models. Recent studies of the carbon and nitrogen abundances in metal-poor stars have focused on the most carbon-rich stars, leading to a potential selection bias against stars that have been polluted by AGB stars that produced large amounts of nitrogen, and hence have small [C/N] ratios. We call these stars Nitrogen-Enhanced Metal-Poor (NEMP) stars, and define them as having [N/Fe] > +0.5 and [C/N] < -0.5. In this paper, we report on the [C/N] abundances of a sample of 21 carbon-enhanced stars, all but three of which have [C/Fe] < +2.0. If NEMP stars were made as easily as Carbon-Enhanced Metal-Poor (CEMP) stars, then we expected to find between two and seven NEMP stars. Instead, we found no NEMP stars in our sample. Therefore, this observational bias is not an important contributor to the apparent dearth of N-rich stars. Our [C/N] values are in the same range as values reported previously in the literature (-0.5 to +2.0), and all stars are in disagreement with the predicted [C/N] ratios for both low-mass and high-mass AGB stars. We suggest that the decrease in [C/N] from the low-mass AGB models is due to enhanced extra-mixing, while the lack of NEMP stars may be caused by unfavorable mass ratios in binaries or the difficulty of mass transfer in binary systems with large mass ratios.Comment: 14 pages, 7 figures, to be published in Ap

    High resolution UVES/VLT spectra of white dwarfs observed for the ESO SN Ia Progenitor Survey III. DA white dwarfs

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO) DOI: 10.1051/0004-6361/200912531Context. The ESO Supernova Ia Progenitor Survey (SPY) took high-resolution spectra of more than 1000 white dwarfs and pre-white dwarfs. About two thirds of the stars observed are hydrogen-dominated DA white dwarfs. Here we present a catalog and detailed spectroscopic analysis of the DA stars in the SPY. Aims. Atmospheric parameters effective temperature and surface gravity are determined for normal DAs. Double-degenerate binaries, DAs with magnetic fields or dM companions, are classified and discussed. Methods. The spectra are compared with theoretical model atmospheres using a fitting technique. Results. Our final sample contains 615 DAs, which show only hydrogen features in their spectra, although some are double-degenerate binaries. 187 are new detections or classifications. We also find 10 magnetic DAs (4 new) and 46 DA+dM pairs (10 new).Peer reviewe

    Close binary EHB stars from SPY

    Get PDF
    We present the results of a radial velocity (RV) survey of 46 subdwarf B (sdB) and 23 helium-rich subdwarf O (He-sdO) stars. We detected 18 (39%) new sdB binary systems, but only one (4%) He-sdO binary. Orbital parameters of nine sdB and sdO binaries, derived from follow-up spectroscopy, are presented. Our results are compared with evolutionary scenarios and previous observational investigations.Comment: To appear in "Extreme Horizontal Branch Stars and Related Objects", Astrophysics and Space Science, Kluver Academic Publishers, edited by P.F.L. Maxte

    Galactic Archeology with 4MOST

    Full text link
    4MOST is a new wide-field, high-multiplex spectroscopic survey facility for the VISTA telescope of ESO. Starting in 2022, 4MOST will deploy more than 2400 fibres in a 4.1 square degree field-of-view using a positioner based on the tilting spine principle. In this ontribution we give an outline of the major science goals we wish to achieve with 4MOST in the area of Galactic Archeology. The 4MOST Galactic Archeology surveys have been designed to address long-standing and far-reaching problems in Galactic science. They are focused on our major themes: 1) Near-field cosmology tests, 2) Chemo-dynamical characterisation of the major Milky Way stellar components, 3) The Galactic Halo and beyond, and 4) Discovery and characterisation of extremely metal-poor stars. In addition to a top-level description of the Galactic surveys we provide information about how the community will be able to join 4MOST via a call for Public Spectroscopic Surveys that ESO will launch.Comment: To be published in "Rediscovering our Galaxy", IAU Symposium 334, Eds. C. Chiappini, I. Minchev, E. Starkenburg, M. Valentin

    Observational evidence for a different IMF in the early Galaxy

    Full text link
    The unexpected high incidence of carbon-enhanced, s-process enriched unevolved stars amongst extremely metal-poor stars in the halo provides a significant constraint on the Initial Mass Function (IMF) in the early Galaxy. We argue that these objects are evidence for the past existence of a large population of intermediate-mass stars, and conclude that the IMF in the early Galaxy was different from the present, and shifted toward higher masses.Comment: 14 pages, 1 color figure, accepted for publication on Ap

    Metal-Poor Stars Observed with the Magellan Telescope I. Constraints on Progenitor Mass and Metallicity of AGB Stars Undergoing s-Process Nucleosynthesis

    Get PDF
    We present a comprehensive abundance analysis of two newly-discovered carbon-enhanced metal-poor (CEMP) stars. HE2138-3336 is a s-process-rich star with [Fe/H] = -2.79, and has the highest [Pb/Fe] abundance ratio measured thus far, if NLTE corrections are included ([Pb/Fe] = +3.84). HE2258-6358, with [Fe/H] = -2.67, exhibits enrichments in both s- and r-process elements. These stars were selected from a sample of candidate metal-poor stars from the Hamburg/ESO objective-prism survey, and followed up with medium-resolution (R ~ 2,000) spectroscopy with GEMINI/GMOS. We report here on derived abundances (or limits) for a total of 34 elements in each star, based on high-resolution (R ~ 30,000) spectroscopy obtained with Magellan-Clay/MIKE. Our results are compared to predictions from new theoretical AGB nucleosynthesis models of 1.3 Mo with [Fe/H] = -2.5 and -2.8, as well as to a set of AGB models of 1.0 to 6.0 Mo at [Fe/H] = -2.3. The agreement with the model predictions suggests that the neutron-capture material in HE2138-3336 originated from mass transfer from a binary companion star that previously went through the AGB phase, whereas for HE2258-6358, an additional process has to be taken into account to explain its abundance pattern. We find that a narrow range of progenitor masses (1.0 < M(Mo) < 1.3) and metallicities (-2.8 < [Fe/H] < -2.5) yield the best agreement with our observed elemental abundance patterns.Comment: Accepted for publication in Ap
    • 

    corecore