28 research outputs found

    EEG Data Quality: Determinants and Impact in a Multicenter Study of Children, Adolescents, and Adults with Attention-Deficit/Hyperactivity Disorder (ADHD)

    Get PDF
    Electroencephalography (EEG) represents a widely established method for assessing altered and typically developing brain function. However, systematic studies on EEG data quality, its correlates, and consequences are scarce. To address this research gap, the current study focused on the percentage of artifact-free segments after standard EEG pre-processing as a data quality index. We analyzed participant-related and methodological influences, and validity by replicating landmark EEG effects. Further, effects of data quality on spectral power analyses beyond participant-related characteristics were explored. EEG data from a multicenter ADHD-cohort (age range 6 to 45 years), and a non-ADHD school-age control group were analyzed (ntotal = 305). Resting-state data during eyes open, and eyes closed conditions, and task-related data during a cued Continuous Performance Task (CPT) were collected. After pre-processing, general linear models, and stepwise regression models were fitted to the data. We found that EEG data quality was strongly related to demographic characteristics, but not to methodological factors. We were able to replicate maturational, task, and ADHD effects reported in the EEG literature, establishing a link with EEG-landmark effects. Furthermore, we showed that poor data quality significantly increases spectral power beyond effects of maturation and symptom severity. Taken together, the current results indicate that with a careful design and systematic quality control, informative large-scale multicenter trials characterizing neurophysiological mechanisms in neurodevelopmental disorders across the lifespan are feasible. Nevertheless, results are restricted to the limitations reported. Future work will clarify predictive value

    Human Hepatitis B Virus Production in Avian Cells Is Characterized by Enhanced RNA Splicing and the Presence of Capsids Containing Shortened Genomes

    Get PDF
    Experimental studies on hepatitis B virus (HBV) replication are commonly done with human hepatoma cells to reflect the natural species and tissue tropism of the virus. However, HBV can also replicate, upon transfection of virus coding plasmids, in cells of other species. In such cross-species transfection experiments with chicken LMH hepatoma cells, we previously observed the formation of HBV genomes with aberrant electrophoretic mobility, in addition to the those DNA species commonly seen in human HepG2 hepatoma cells. Here, we report that these aberrant DNA forms are mainly due to excessive splicing of HBV pregenomic RNA and the abundant synthesis of spliced DNA products, equivalent to those also made in human cells, yet at much lower level. Mutation of the common splice acceptor site abolished splicing and in turn enhanced production of DNA from full-length pgRNA in transfected LMH cells. The absence of splicing made other DNA molecules visible, that were shortened due to the lack of sequences in the core protein coding region. Furthermore, there was nearly full-length DNA in the cytoplasm of LMH cells that was not protected in viral capsids. Remarkably, we have previously observed similar shortened genomes and non-protected viral DNA in human HepG2 cells, yet exclusively in the nucleus where uncoating and final release of viral genomes occurs. Hence, two effects reflecting capsid disassembly in the nucleus in human HepG2 cells are seen in the cytoplasm of chicken LMH cells

    Generation of Covalently Closed Circular DNA of Hepatitis B Viruses via Intracellular Recycling Is Regulated in a Virus Specific Manner

    Get PDF
    Persistence of hepatitis B virus (HBV) infection requires covalently closed circular (ccc)DNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc) DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV) in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process

    Sequential treatment of ADHD in mother and child (AIMAC study): importance of the treatment phases for intervention success in a randomized trial

    Get PDF
    Background: The efficacy of parent-child training (PCT) regarding child symptoms may be reduced if the mother has attention-deficit/hyperactivity disorder (ADHD). The AIMAC study (ADHD in Mothers and Children) aimed to compensate for the deteriorating effect of parental psychopathology by treating the mother (Step 1) before the beginning of PCT (Step 2). This secondary analysis was particularly concerned with the additional effect of the Step 2 PCT on child symptoms after the Step 1 treatment. Methods: The analysis included 143 mothers and children (aged 6–12 years) both diagnosed with ADHD. The study design was a two-stage, two-arm parallel group trial (Step 1 treatment group [TG]: intensive treatment of the mother including psychotherapy and pharmacotherapy; Step 1 control group [CG]: supportive counseling only for mother; Step 2 TG and CG: PCT). Single- and multi-group analyses with piecewise linear latent growth curve models were applied to test for the effects of group and phase. Child symptoms (e.g., ADHD symptoms, disruptive behavior) were rated by three informants (blinded clinician, mother, teacher). Results: Children in the TG showed a stronger improvement of their disruptive behavior as rated by mothers than those in the CG during Step 1 (Step 1: TG vs. CG). In the CG, according to reports of the blinded clinician and the mother, the reduction of children’s disruptive behavior was stronger during Step 2 than during Step 1 (CG: Step 1 vs. Step 2). In the TG, improvement of child outcome did not differ across treatment steps (TG: Step 1 vs. Step 2). Conclusions: Intensive treatment of the mother including pharmacotherapy and psychotherapy may have small positive effects on the child’s disruptive behavior. PCT may be a valid treatment option for children with ADHD regarding disruptive behavior, even if mothers are not intensively treated beforehand. Trial registration: ISRCTN registry ISRCTN73911400. Registered: 29 March 2007

    Coping Strategies Influence Cardiometabolic Risk Factors in Chronic Psychological Stress: A Post Hoc Analysis of A Randomized Pilot Study

    No full text
    Chronic psychological stress can result in physiological and mental health risks via the activation of the hypothalamic–pituitary–adrenal (HPA) axis, sympathoadrenal activity and emotion-focused coping strategies. The impact of different stress loads on cardiometabolic risk is poorly understood. This post hoc analysis of a randomized pilot study was conducted on 61 participants (18–65 years of age) with perceived chronic stress. The Perceived Stress Questionnaire (PSQ30), Psychological Neurological Questionnaire (PNF), anthropometric, clinical and blood parameters were assessed. Subjects were assigned to ‘high stress’ (HS; PSQ30 score: 0.573 ± 0.057) and ‘very high stress’ (VHS; PSQ30 score: 0.771 ± 0.069) groups based on the PSQ30. Morning salivary cortisol and CRP were elevated in both groups. Visceral adiposity, elevated blood pressure and metabolic syndrome were significantly more frequent in the HS group vs. the VHS group. The fatty liver index (FLI) was higher (p = 0.045), while the PNF score was lower (p < 0.001) in the HS group. The HS group was comprised of more smokers (p = 0.016). Energy intake and physical activity levels were similar in both groups. Thus, high chronic stress was related to visceral adiposity, FLI, elevated blood pressure and metabolic syndrome in the HS group, while very high chronic stress was associated with psychological–neurological symptoms and a lower cardiometabolic risk in the VHS group, probably due to different coping strategies

    Few basepairing-independent motifs in the apical half of the avian HBV ε RNA stem-loop determine site-specific initiation of protein-priming.

    Get PDF
    Hepadnaviruses, including human hepatitis B virus (HBV), replicate their tiny DNA genomes by protein-primed reverse transcription of a pregenomic (pg) RNA. Replication initiation as well as pgRNA encapsidation depend on the interaction of the viral polymerase, P protein, with the ε RNA element, featuring a lower and an upper stem, a central bulge, and an apical loop. The bulge, somehow assisted by the loop, acts as template for a P protein-linked DNA oligo that primes full-length minus-strand DNA synthesis. Phylogenetic conservation and earlier mutational studies suggested the highly based-paired ε structure as crucial for productive interaction with P protein. Using the tractable duck HBV (DHBV) model we here interrogated the entire apical DHBV ε (Dε) half for sequence- and structure-dependent determinants of in vitro priming activity, replication, and, in part, in vivo infectivity. This revealed single-strandedness of the bulge, a following G residue plus the loop subsequence GUUGU as the few key determinants for priming and initiation site selection; unexpectedly, they functioned independently of a specific structure context. These data provide new mechanistic insights into avihepadnaviral replication initiation, and they imply a new concept towards a feasible in vitro priming system for human HBV

    Monoclonal Antibodies Providing Topological Information on the Duck Hepatitis B Virus Core Protein and Avihepadnaviral Nucleocapsid Structure▿ †

    No full text
    The icosahedral capsid of duck hepatitis B virus (DHBV) is formed by a single core protein species (DHBc). DHBc is much larger than HBc from human HBV, and no high-resolution structure is available. In an accompanying study (M. Nassal, I. Leifer, I. Wingert, K. Dallmeier, S. Prinz, and J. Vorreiter, J. Virol. 81:13218-13229, 2007), we used extensive mutagenesis to derive a structural model for DHBc. For independent validation, we here mapped the epitopes of seven anti-DHBc monoclonal antibodies. Using numerous recombinant DHBc proteins and authentic nucleocapsids from different avihepadnaviruses as test antigens, plus a panel of complementary assays, particle-specific and exposed plus buried linear epitopes were revealed. These data fully support key features of the model
    corecore