324 research outputs found
ties that bind us
when objects converge in a space
they start a dialogue of their lives
lives that become entangled with your life
your memory
objects are the narrators of memory
a stain, a chip, a tear
materials embed meaning and metaphor within the process of creating
woven cloth, throwing lines, squeezed and pressed coils
all become remnants of the hand
as I make, play, and collect materials and objects
questions are brought forward
How do these components talk to one other?
What are they saying?
How do I listen?
knowledge is generated in the transformation of material through the process of
making with my hands.
a call and response
a conversation
an attentive listener / / an intuitive maker
I seek to excavate spaces and analyze my findings
in hope of contemplation and examination
a moment where my art becomes artifact
where the unfamiliar appears familiar
connecting materials and objects that have anchored our human experience
to ask the unanswerable questions of human existence
to love
to grieve
to grasp onto memories
to let go
to admire fate
to mourn
to gro
What are the impacts and cost-effectiveness of strategies to improve performance of untrained and under-trained teachers in the classroom in developing countries?
What are the impacts and cost effectiveness of strategies to improve performance of untrained and under-trained teachers in the classroom in developing countries
Guidance Molecules in Vascular Smooth Muscle
Several highly conserved families of guidance molecules, including ephrins, Semaphorins, Netrins, and Slits, play conserved and distinct roles in tissue remodeling during tissue patterning and disease pathogenesis. Primarily, these guidance molecules function as either secreted or surface-bound ligands that interact with their receptors to activate a variety of downstream effects, including cell contractility, migration, adhesion, proliferation, and inflammation. Vascular smooth muscle cells, contractile cells comprising the medial layer of the vessel wall and deriving from the mural population, regulate vascular tone and blood pressure. While capillaries lack a medial layer of vascular smooth muscle, mural-derived pericytes contribute similarly to capillary tone to regulate blood flow in various tissues. Furthermore, pericyte coverage is critical in vascular development, as perturbations disrupt vascular permeability and viability. During cardiovascular disease, smooth muscle cells play a more dynamic role in which suppression of contractile markers, enhanced proliferation, and migration lead to the progression of aberrant vascular remodeling. Since many types of guidance molecules are expressed in vascular smooth muscle and pericytes, these may contribute to blood vessel formation and aberrant remodeling during vascular disease. While vascular development is a large focus of the existing literature, studies emerged to address post-developmental roles for guidance molecules in pathology and are of interest as novel therapeutic targets. In this review, we will discuss the roles of guidance molecules in vascular smooth muscle and pericyte function in development and disease
Editorial: From Pedagogic Research to Embedded E-Learning
This Special Issue of Reflecting Education arises from the work of the PREEL project (From Pedagogic Research to Embedded e-Learning) at the Institute of Education from 2006-2008. This project was one of nine HEA/JISC (Higher Education Academy and Joint Information Systems Committee) Pilot Pathfinder Projects and followed on from our involvement in the Pilot Benchmarking of e-Learning Programme. In the benchmarking exercise we identified a lack of coordination between research and practice in e-learning at the IoE as one of our crucial weaknesses, and so our Pilot Pathfinder project concentrated on this theme of building links between e-learning research and practice
A guide to pre-processing high-throughput animal tracking data
1. Modern, high-throughput animal tracking studies collect increasingly large volumes of data at very fine temporal scales. At these scales, location error can exceed the animal’s step size, leading to mis-estimation of key movement metrics such as speed. ‘Cleaning’ the data to reduce location errors prior to analyses is one of the main ways movement ecologists deal with noisy data, and has the advantage of being more scalable to massive datasets than more complex methods. Though data cleaning is widely recommended, and ecologists routinely consider cleaned data to be the ground-truth, inclusive uniform guidance on this crucial step, and on how to organise the cleaning of massive datasets, is still rather scarce. 2. A pipeline for cleaning massive high-throughput datasets must balance ease of use and computationally efficient signal vs. noise screening, in which location errors are rejected without discarding valid animal movements. Another useful feature of a pre-processing pipeline is efficiently segmenting and clustering location data for statistical methods, while also being scalable to large datasets and robust to imperfect sampling. Manual methods being prohibitively time consuming, and to boost reproducibility, a robust pre-processing pipeline must be automated. 3. In this article we provide guidance on building pipelines for pre-processing high-throughput animal tracking data in order to prepare it for subsequent analysis. Our recommended pipeline, consisting of removing outliers, smoothing the filtered result, and thinning it to a uniform sampling interval, is applicable to many massive tracking datasets. We apply this pipeline to simulated movement data with location errors, and also show a case study of how large volumes of cleaned data can be transformed into biologically meaningful ‘residence patches’, for quick biological inference on animal space use. We use calibration data to illustrate how pre-processing improves its quality, and to verify that the residence patch synthesis accurately captures animal space use. Finally, turning to tracking data from Egyptian fruit bats (Rousettus aegyptiacus), we demonstrate the pre-processing pipeline and residence patch method in a fully worked out example. 4. To help with fast implementation of standardised methods, we developed the R package atlastools, which we also introduce here. Our pre-processing pipeline and atlastools can be used with any high-throughput animal movement data in which the high data-volume combined with knowledge of the tracked individuals’ movement capacity can be used to reduce location errors. The atlastools function is easy to use for beginners, while providing a template for further development. The use of common pre-processing steps that are simple yet robust promotes standardised methods in the field of movement ecology and leads to better inferences from data
"Now he walks and walks, as if he didn't have a home where he could eat": food, healing, and hunger in Quechua narratives of madness
In the Quechua-speaking peasant communities of southern Peru, mental disorder is understood less as individualized pathology and more as a disturbance in family and social relationships. For many Andeans, food and feeding are ontologically fundamental to such relationships. This paper uses data from interviews and participant observation in a rural province of Cuzco to explore the significance of food and hunger in local discussions of madness. Carers’ narratives, explanatory models, and theories of healing all draw heavily from idioms of food sharing and consumption in making sense of affliction, and these concepts structure understandings of madness that differ significantly from those assumed by formal mental health services. Greater awareness of the salience of these themes could strengthen the input of psychiatric and psychological care with this population and enhance knowledge of the alternative treatments that they use. Moreover, this case provides lessons for the global mental health movement on the importance of openness to the ways in which indigenous cultures may construct health, madness, and sociality. Such local meanings should be considered by mental health workers delivering services in order to provide care that can adjust to the alternative ontologies of sufferers and carers
Mutation in the Gene Encoding Ubiquitin Ligase LRSAM1 in Patients with Charcot-Marie-Tooth Disease
Charcot-Marie-Tooth disease (CMT) represents a family of related sensorimotor neuropathies. We studied a large family from a rural eastern Canadian community, with multiple individuals suffering from a condition clinically most similar to autosomal recessive axonal CMT, or AR-CMT2. Homozygosity mapping with high-density SNP genotyping of six affected individuals from the family excluded 23 known genes for various subtypes of CMT and instead identified a single homozygous region on chromosome 9, at 122,423,730–129,841,977 Mbp, shared identical by state in all six affected individuals. A homozygous pathogenic variant was identified in the gene encoding leucine rich repeat and sterile alpha motif 1 (LRSAM1) by direct DNA sequencing of genes within the region in affected DNA samples. The single nucleotide change mutates an intronic consensus acceptor splicing site from AG to AA. Direct analysis of RNA from patient blood demonstrated aberrant splicing of the affected exon, causing an obligatory frameshift and premature truncation of the protein. Western blotting of immortalized cells from a homozygous patient showed complete absence of detectable protein, consistent with the splice site defect. LRSAM1 plays a role in membrane vesicle fusion during viral maturation and for proper adhesion of neuronal cells in culture. Other ubiquitin ligases play documented roles in neurodegenerative diseases. LRSAM1 is a strong candidate for the causal gene for the genetic disorder in our kindred
Recommended from our members
Novel Bacterial Clade Reveals Origin of Form I Rubisco
Rubisco sustains the biosphere through the fixation of CO2 into biomass. In plants and cyanobacteria, Form I Rubisco is structurally comprised of large and small subunits, whereas all other Rubisco Forms lack small subunits. Thus, the rise of the Form I complex through the innovation of small subunits represents a key, yet poorly understood, transition in Rubisco’s evolution. Through metagenomic analyses, we discovered a previously uncharacterized clade sister to Form I Rubisco that evolved without small subunits. This clade diverged prior to the evolution of cyanobacteria and the origin of the small subunit; thus, it provides a unique reference point to advance our understanding of Form I Rubisco evolution. Structural and kinetic data presented here reveal how a proto-Form I Rubisco assembled and functioned without the structural stability imparted from small subunits. Our findings provide insight into a key evolutionary transition of the most abundant enzyme on Earth and the predominant entry point for nearly all global organic carbon
- …