35 research outputs found

    Penerapan Model Pembelajaran Atraktif Berbasis Multiple Intelligences Tentang Pemantulan Cahaya pada Cermin

    Get PDF
    Penelitian ini bertujuan untuk mengetahui efektivitas penerapan model pembelajaran atraktif berbasis multiple intelligences dalam meremediasi miskonsepsi siswa tentang pemantulan cahaya pada cermin. Pada penelitian ini digunakan bentuk pre-eksperimental design dengan rancangan one group pretest-post test design. Alat pengumpulan data berupa tes pilihan ganda dengan reasoning. Hasil validitas sebesar 4,08 dan reliabilitas 0,537. Siswa dibagi menjadi lima kelompok kecerdasan, yaitu kelompok linguistic intelligence, mathematical-logical intelligence, visual-spatial intelligence, bodily-khinestetic intelligence, dan musical intelligence. Siswa membahas konsep fisika sesuai kelompok kecerdasannya dalam bentuk pembuatan pantun-puisi, teka-teki silang, menggambar kreatif, drama, dan mengarang lirik lagu. Efektivitas penerapan model pembelajaran multiple intelligences menggunakan persamaan effect size. Ditemukan bahwa skor effect size masing-masing kelompok berkategori tinggi sebesar 5,76; 3,76; 4,60; 1,70; dan 1,34. Penerapan model pembelajaran atraktif berbasis multiple intelligences efektif dalam meremediasi miskonsepsi siswa. Penelitian ini diharapkan dapat digunakan pada materi fisika dan sekolah lainnya

    Use of a Bidentate Ligand Featuring an <i>N</i>‑Heterocyclic Phosphenium Cation (NHP<sup>+</sup>) to Systematically Explore the Bonding of NHP<sup>+</sup> Ligands with Nickel

    No full text
    A novel bidentate ligand featuring an <i>N</i>-heterocyclic phosphenium cation (NHP<sup>+</sup>) linked to a phosphine side arm is used to explore the coordination chemistry of NHP<sup>+</sup> ligands with nickel. Direct P–Cl bond cleavage from a chlorophosphine precursor [PP]-Cl (<b>1</b>) by Ni­(COD)<sub>2</sub> affords the asymmetric bimetallic complex [Cl<sub>2</sub>Ni­(μ-PP)<sub>2</sub>Ni] (<b>2</b>) via a nonoxidative process. Abstraction of the halide with either NaBPh<sub>4</sub> or K­[B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] prior to metal coordination to form the free phosphenium ligand [PP]<sup>+</sup> <i>in situ</i>, followed by coordination to Ni­(COD)<sub>2</sub>, afforded the halide-free Ni<sup>0</sup> complexes [(PP)­Ni­(COD)] [B­(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] (<b>4</b>) and [(PP)­Ni­(COD)]­[BPh<sub>4</sub>] (<b>5</b>). Chloride abstraction from <b>1</b> is problematic in the presence of a PF<sub>6</sub><sup>–</sup> counterion, however, as evident by the formation of [(PP)­Ni­(PP-F)]­[PF<sub>6</sub>] (<b>3</b>). The COD ligand in <b>5</b> can be readily displaced with PMe<sub>3</sub> or PPh<sub>3</sub> to afford [(PP)­NiL<sub>2</sub>]­[BPh<sub>4</sub>] (L = PMe<sub>3</sub> (<b>6</b>), PPh<sub>3</sub> (<b>7</b>)). Complexes <b>2</b>–<b>7</b> feature planar geometries about the NHP<sup>+</sup> phosphorus atom and unusually short Ni–P distances, indicative of multiple bonding resulting from both P → Ni σ donation and Ni → P π backbonding. This bonding description is supported by theoretical studies using natural bond orbital analysis

    Noninnocent Behavior of Bidentate Amidophosphido [NP]<sup>2–</sup> Ligands upon Coordination to Copper

    No full text
    The synthesis and preliminary coordination chemistry of two new redox-active bidentate ligands containing amido and phosphido donors are described. Treatment of the [<sup>R</sup>NP]<sup>2–</sup> (R = Ph, 2,4,6-trimethylphenyl) ligands with CuCl<sub>2</sub> and PMe<sub>3</sub> results in a dimeric copper­(I) P–P coupled product via ligand oxidation. The intermediate of this reaction is proposed to involve a ligand radical generated via oxidation of the [<sup>R</sup>NP]<sup>2–</sup> ligand by copper­(II), and the existence of such an intermediate is probed using computational methods. Significant radical character on the phosphorus atoms of the alleged [<sup>R</sup>NP]<sup>•–</sup>/copper­(I) intermediate leads to P–P radical coupling

    Si–H Bond Activation and Dehydrogenative Coupling of Silanes across the Iron–Amide Bond of a Bis(amido)bis(phosphine) Iron(II) Complex

    No full text
    Despite the utility of Si–Si bonds, there are relatively few examples of Si–Si bond formation by base metals. In this work, a four-coordinate iron complex, (PNNP)FeII, is shown to strongly activate the Si–H bonds in primary silanes across the Fe–amide bonds in a metal–ligand cooperative fashion. Upon treatment with excess silane, Si–Si dehydrogenative homocoupling is shown to occur across the Fe–Namide bond without concomitant oxidation and spin state changes at the Fe center

    Formation and Subsequent Reactivity of a N<sub>2</sub>‑Stabilized Cobalt–Hydride Complex

    No full text
    The reduced heterobimetallic Co/Zr complex N<sub>2</sub>Co­(<sup><i>i</i></sup>Pr<sub>2</sub>PNMes)<sub>3</sub>Zr­(THF) (<b>1</b>) has been previously reported to react with the CO bonds of CO<sub>2</sub> and benzophenone to generate Zr/Co μ-oxo complexes OC-Co­(<sup><i>i</i></sup>Pr<sub>2</sub>PNMes)<sub>2</sub>(μ-O)­Zr­(<sup><i>i</i></sup>Pr<sub>2</sub>PNMes) (<b>1-CO</b><sub><b>2</b></sub>) and Ph<sub>2</sub>CCo­(<sup><i>i</i></sup>Pr<sub>2</sub>PNMes)<sub>2</sub>(μ-O)­Zr­(<sup><i>i</i></sup>Pr<sub>2</sub>PNMes) (<b>1-Ph</b><sub><b>2</b></sub><b>CO</b>), respectively. Herein, we report a similar reaction of <b>1</b> with pyridine-<i>N</i>-oxide to form an analogous complex (pyridine)­Co­(<sup><i>i</i></sup>Pr<sub>2</sub>PNMes)<sub>2</sub>(μ-O)­Zr­(<sup><i>i</i></sup>Pr<sub>2</sub>PNMes) (<b>2</b>) with a more labile ligand bound to cobalt. Much like <b>1-CO</b><sub><b>2</b></sub> and <b>1-Ph</b><sub><b>2</b></sub><b>CO</b>, compound <b>2</b> reacts with Ph<sub>3</sub>SiH via formation of a Si–O linkage to form (N<sub>2</sub>)­(H)­Co­(<sup><i>i</i></sup>Pr<sub>2</sub>PNMes)<sub>3</sub>ZrOSiPh<sub>3</sub> (<b>5</b>). The dinitrogen ligand in <b>5</b> is weakly bound and can be readily removed in vacuo or displaced by other L-type ligands. This allows complex <b>5</b> to undergo insertion reactions with unsaturated substrates, including diphenyldiazomethane, CO<sub>2</sub>, benzonitrile, and phenylacetylene to give hydrazonato (Ph<sub>2</sub>CNNH)­Co­(<sup><i>i</i></sup>Pr<sub>2</sub>PNMes)<sub><b>3</b></sub>ZrOSiPh<sub>3</sub> (<b>7</b>), formate (OC­(H)­O)­Co­(<sup><i>i</i></sup>Pr<sub>2</sub>PNMes)<sub>3</sub>ZrOSiPh<sub>3</sub> (<b>8</b>), ketimide (PhHCN)­Co­(<sup><i>i</i></sup>Pr<sub>2</sub>PNMes)<sub>3</sub>ZrOSiPh<sub>3</sub> (<b>9</b>), and ylide Co­(PhHCCHP<sup><i>i</i></sup>Pr<sub>2</sub>NMes)­(<sup><i>i</i></sup>Pr<sub>2</sub>PNMes)<sub>2</sub>ZrOSiPh<sub>3</sub> (<b>10</b>) products, respectively. Compound <b>5</b> was also found to catalyze the isomerization of 1-hexene to internal isomers

    Cobalt N‑Heterocyclic Phosphenium Complexes Stabilized by a Chelating Framework: Synthesis and Redox Properties

    No full text
    Two cobalt complexes containing coordinated N-heterocyclic phosphenium (NHP<sup>+</sup>) ligands are synthesized using a bidentate NHP<sup>+</sup>/phosphine chelating ligand, <b>[PP]</b><sup><b>+</b></sup>. Treatment of Na­[Co­(CO)<sub>4</sub>] with the chlorophosphine precursor [PP]Cl (<b>1</b>) affords [PP]­Co­(CO)<sub>2</sub> (<b>2</b>), which features a planar geometry at the NHP<sup>+</sup> phosphorus center and a short Co–P distance [1.9922(4) Å] indicative of a CoP double bond. The more electron-rich complex [PP]­Co­(PMe<sub>3</sub>)<sub>2</sub> (<b>3</b>), which is synthesized in a one-pot reduction procedure with <b>1</b>, CoCl<sub>2</sub>, PMe<sub>3</sub>, and KC<sub>8</sub>, has an even shorter Co–P bond [1.9455(6) Å] owing to stronger metal-to-phosphorus back-donation. The redox properties of <b>2</b> and <b>3</b> were explored using cyclic voltammetry, and oxidation of <b>3</b> was achieved to afford [[PP]­Co­(PMe<sub>3</sub>)<sub>2</sub>]<sup>+</sup> (<b>4</b>). The electron paramagnetic resonance spectrum of complex <b>4</b> features hyperfine coupling to both <sup>59</sup>Co and <sup>31</sup>P, suggesting strong delocalization of the unpaired electron density in this complex. Density functional theory calculations are used to further explore the bonding and redox behavior of complexes <b>2</b>–<b>4</b>, shedding light on the potential for redox noninnocent behavior of NHP<sup>+</sup> ligands

    Synthesis, Structure, and Reactivity of an Anionic Zr–Oxo Relevant to CO<sub>2</sub> Reduction by a Zr/Co Heterobimetallic Complex

    No full text
    Oxidative addition of CO<sub>2</sub> to the reduced Zr/Co complex (THF)­Zr­(MesNP<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Co (<b>1</b>) followed by one-electron reduction leads to formation of an unusual terminal Zr–oxo anion [<b>2]­[Na­(THF)</b><sub><b>3</b></sub><b>]</b> in low yield. To facilitate further study of this compound, an alternative high-yielding synthetic route has been devised. First, <b>1</b> is treated with CO to form (THF)­Zr­(MesNP<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Co­(CO) (<b>3</b>); then, addition of H<sub>2</sub>O to <b>3</b> leads to the Zr–hydroxide complex (HO)­Zr­(MesNP<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Co­(CO) (<b>4</b>). Deprotonation of <b>4</b> with Li­(N­(SiMe<sub>3</sub>)<sub>2</sub>) leads to the anionic Zr–oxo species <b>[2]­[Li­(THF)</b><sub><b>3</b></sub><b>]</b> or <b>[2]­[Li­(12-c-4)]</b> in the absence or presence of 12-crown-4, respectively. The coordination sphere of the Li<sup>+</sup> countercation is shown to lead to interesting structural differences between these two species. The anionic oxo fragment in complex <b>[2]­[Li­(12-c-4)]</b> reacts with electrophiles such as MeOTf and Me<sub>3</sub>SiOTf to generate (MeO)­Zr­(MesNP<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Co­(CO) (<b>5</b>) and (Me<sub>3</sub>SiO)­Zr­(MesNP<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Co­(CO) (<b>6</b>), respectively, and addition of acetic anhydride generates (AcO)­Zr­(MesNP<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Co­(CO) (<b>7</b>). Complex <b>[2]­[Li­(12-c-4)]</b> is also shown to bind CO<sub>2</sub> to form a monoanionic Zr–carbonate, [(12-crown-4)­Li]­[(κ<sup>2</sup>-CO<sub>3</sub>)­Zr­(MesNP<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Co­(CO)] (<b>[8]­[Li­(12-c-4)]</b>). A more stable version of this compound <b>[8]­[K­(18-c-6)]</b> is formed when a K<sup>+</sup> counteranion and 18-crown-6 are used. Binding of CO<sub>2</sub> to <b>[2]­[Li­(12-c-4)]</b> is shown to be reversible using isotopic labeling studies. In an effort to address methods by which these CO<sub>2</sub>-derived products could be turned over in a catalytic cycle, it is shown that the Zr–OMe bond in <b>5</b> can be cleaved using H<sup>+</sup> and the CO ligand can be released from Co under photolytic conditions in the presence of I<sub>2</sub>

    Cobalt N‑Heterocyclic Phosphenium Complexes Stabilized by a Chelating Framework: Synthesis and Redox Properties

    No full text
    Two cobalt complexes containing coordinated N-heterocyclic phosphenium (NHP<sup>+</sup>) ligands are synthesized using a bidentate NHP<sup>+</sup>/phosphine chelating ligand, <b>[PP]</b><sup><b>+</b></sup>. Treatment of Na­[Co­(CO)<sub>4</sub>] with the chlorophosphine precursor [PP]Cl (<b>1</b>) affords [PP]­Co­(CO)<sub>2</sub> (<b>2</b>), which features a planar geometry at the NHP<sup>+</sup> phosphorus center and a short Co–P distance [1.9922(4) Å] indicative of a CoP double bond. The more electron-rich complex [PP]­Co­(PMe<sub>3</sub>)<sub>2</sub> (<b>3</b>), which is synthesized in a one-pot reduction procedure with <b>1</b>, CoCl<sub>2</sub>, PMe<sub>3</sub>, and KC<sub>8</sub>, has an even shorter Co–P bond [1.9455(6) Å] owing to stronger metal-to-phosphorus back-donation. The redox properties of <b>2</b> and <b>3</b> were explored using cyclic voltammetry, and oxidation of <b>3</b> was achieved to afford [[PP]­Co­(PMe<sub>3</sub>)<sub>2</sub>]<sup>+</sup> (<b>4</b>). The electron paramagnetic resonance spectrum of complex <b>4</b> features hyperfine coupling to both <sup>59</sup>Co and <sup>31</sup>P, suggesting strong delocalization of the unpaired electron density in this complex. Density functional theory calculations are used to further explore the bonding and redox behavior of complexes <b>2</b>–<b>4</b>, shedding light on the potential for redox noninnocent behavior of NHP<sup>+</sup> ligands

    Stoichiometric Cî—»O Bond Oxidative Addition of Benzophenone by a Discrete Radical Intermediate To Form a Cobalt(I) Carbene

    No full text
    Single electron transfer from the Zr<sup>III</sup>Co<sup>0</sup> heterobimetallic complex (THF)­Zr­(MesNP<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Co–N<sub>2</sub> (<b>1</b>) to benzophenone was previously shown to result in the isobenzopinacol product [(Ph<sub>2</sub>CO)­Zr­(MesNP<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Co–N<sub>2</sub>]<sub>2</sub> (<b>2</b>) via coupling of two ketyl radicals. In this work, thermolysis of <b>2</b> in an attempt to favor a monomeric ketyl radical species unexpectedly led to cleavage of the C–O bond to generate a Zr/Co μ-oxo species featuring an unusual terminal CoCPh<sub>2</sub> carbene linkage, (η<sup>2</sup>-MesNP<sup><i>i</i></sup>Pr<sub>2</sub>)­Zr­(μ-O)­(MesNP<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>2</sub>CoCPh<sub>2</sub> (<b>3</b>). This complex was characterized structurally and spectroscopically, and its electronic structure is discussed in the context of density functional theory calculations. Complex <b>3</b> was also shown to be active toward carbene group transfer (cyclopropanation), and silane addition to <b>3</b> leads to PhSiH<sub>2</sub>O–Zr­(MesNP<sup><i>i</i></sup>Pr<sub>2</sub>)<sub>3</sub>Co–N<sub>2</sub> (<b>5</b>) via a proposed Co–alkyl bond homolysis route

    One Bridge, Three Bonds: A Frontier in Multiple Bonding in Heterobimetallic Complexes

    No full text
    A single bridging phosphinoamide ligand was shown to support a metal–metal triple bond in a Zr/Co heterobimetallic complex. The similarity of the bonding in this compound to previously synthesized Zr/Co species, and therefore the assignment of the Zr/Co triple bond, is supported by the structural parameters of the complex, the electronic structure predicted by density functional theory, and complete-active-space self-consistent-field (CASSCF) calculations. This demonstrates that metal–metal multiple bonds can be realized in heterobimetallic complexes without multiple bridging ligands to enforce the proximity of the two metals
    corecore